Молекулы рнк в клетке находятся. Рибонуклеиновая кислота

Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.

1) Информационная РНК (и-РНК).

2) Рибосомная РНК (р-РНК).

3) Транспортная РНК (т-РНК).

4) Минорные (малые) РНК. Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.

5) Рибозимы. Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).

6) Вирусные РНК. Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК. Рибонуклеиновые кислоты. РНК, строение, структуры, виды, роль. Генетический код. Механизмы передачи генетической информации. Репликация. Транскрипция

Рибосомная РНК.

На долю рРНК приходится 90% всей РНК клетки, она характеризуется метаболической стабильностью. У прокариот различают три различных типа рРНК с коэффициентами седиментации 23S,16S и 5S; у эукариот четыре типа:-28S, 18S,5S и 5,8S.

РНК этого типа локализованы в рибосомах и участвуют в специфическом взаимодействии с рибосомными белками.

Рибосомные РНК имеют форму вторичной структуры в виде которых двуспиральных участков, соединенных изогнутой одиночной цепью. Белки рибосомы связаны преимущественно с однотяжевыми участками молекулы.

Для рРНК характерно наличие модифицированных оснований, однако в значительно меньшем количестве, чем в тРНК. В рРНК присутствуют главным образом метилизированные нуклеотиды, причем метильные группы присоединены либо к основанию, либо к 2 / - OH- группе рибозы.

Транспортная РНК.

Молекулы тРНК представляют собой единую цепь, состоящую из 70-90 нуклеотидов, с молекулярной массой 23000-28000 и константой седиментации 4S. В клеточной РНК транспортная РНК составляет 10-20%. Молекулы тРНК обладают способностью ковалентно связываться с определенной аминокислотой и соединяться через систему водородных связей с одним из нуклеотидных триплетов молекулы мРНК. Таким образом, тРНК реализуют кодовое соответствие между аминокислотой и отвечающим ей кодоном мРНК. Для выполнения адапторной функции тРНК должны иметь вполне определенную вторичную и третичную структуру.


Каждая молекула тРНК обладает постоянной вторичной структурой, имеет форму двумерного клеверного листа и состоит из спиральных участков, образованных нуклеотидами одной и той же цепи, и расположенных между ними одноцепочечных петель. Количество спиральных областей достигает половины молекулы.Неспаренные последовательности образуют характерные структурные элементы (ветви),имеющие типичные ветви:

А) акцепторный стебель, на 3 / -OH конце которого в большинстве случаев расположен триплет ЦЦА. К карбоксильной группе концевого аденозина с помощью специфического фермента присоединяется соответствующая аминокислота;

Б) псевдоуридиновая или Т Ц-петля, состоит из семи нуклеотидов с обязательной последовательностью 5 / -Т ЦГ-3 / , в которой содержится псевдоуридин; предполагается что Т Ц-петля используется для связывания тРНК с рибосомой;

В) дополнительная петля-различная по размеру и составу в разных тРНК;

Г) антикодоновая петля состоит из семи нуклеотидов и содержит группу из трех оснований (антикодон), которая комплементарна триплету (кодону) в молекуле иРНК;

Д) дигидроуридиловая петля (D-петля), состоящая из 8-12 нуклеотидов и содержащая от одного до четырех дигидроуридиловых остатков;считается, что D-петля используется для связывания тРНК со специфическим ферментом (аминоацил-тРНК-синтетаза).

Третичная укладка молекул тРНК является весьма компактной и имеет Г-образную форму. Угол подобной структуры образован дигидроуридиновым остатком и Т Ц-петлей, длинное колено образует акцепторный стебель и Т Ц-петля, а короткое-D-петля и антикодоновая петля.

В стабилизации третичной структуры тРНК участвуют поливалентные катионы (Mg 2+ , полиамины), а также водородные связи между основаниями и фосфодиэфирным остовом.

Сложная постранственная укладка молекулы тРНК обусловлена множественными высокоспецифичными взаимодействиями как с белками, так и с другими нуклеиновыми кислотами (рРНК).

Транспортная РНК отличается от других типов РНК высоким содержанием минорных оснований-в среднем 10-12 оснований на молекулу, однако общее число их а тРНК растет по мере продважения организмов по эволюционной лестнице. В тРНК выявлены различные метилированные пуриновые (аденин, гуанин) и пиримидиновые (5-метилцитозин и рибозилтимин) основания, серосодержащие основания (6-тиоурацил), но наиболее распростран(6-тиоурацил), но наиболее распространенным минорным компонентом является псевдоуридин. Роль необычных нуклеотидов в молекулах тРНК пока не ясна, однако пологают, что чем ниже уровень митилирования тРНК, тем она менее активна и специфична.

Локализация модифицированных нуклеотидов строго фиксирована. Наличие минорных оснований в составе тРНК обуславливает устойчивасть молекул к действию нуклеаз и, кроме того, они участвуют в поддержании определенной структуры, так как подобные основания не способны к нормальному спариванию и препятствуют образованию двойной спирали. Таким образом, наличие модифицированных оснований в составе тРНК обуславливает не только её структуру, но также и многие специальные функции молекулы тРНК.

В большинстве клеток эукариот содержится набор различных тРНК. Для каждой аминокислоты имеется не менее чем по одной специфической тРНК. тРНК связывающие одну и ту же аминокислоту, называют изоакцепторными. Каждый тип клеток в организме отличется своим соотношением изоакцепторных тРНК.

Матричная (информационная)

Матричная РНК содержит генетическую информацию о последовательности аминокислот для основных ферментов и других белков, т.е. служит матицей для биосинтеза полипептидных цепей. На долю мРНК в клетке приходится 5% от общего количества РНК. В отличий от рРНК и тРНК,мРНК гетерогенна по размерам,её молекулярная масса находится в пределах от 25 10 3 до 1 10 6 ; мРНК характеризуется широким диапазоном констант седиментации (6-25S). Наличие в клетке цепи мРНК переменной длинны отражает разнообразие молекулярных масс белков, синтез которых они обеспечивают.

По своему нуклеотидному составу мРНК соответствует ДНК из той же клетки,т.е. является комплементарной к одной из цепи ДНК. В последовательности нуклеотидов (первичная структура) мРНК заложена информация не только о структуре белка, но и о вторичной структуре самих молекул мРНК. Вторичная структура мРНК формируется за счет взаимокомплементарных последовательностей, содержание которых у РНК различного происхождения сходно и состовляет от 40 до 50%. Значительное количество спаренных участков может образовываться в 3 / и 5 / -зонах мРНК.

Анализ 5 / -концов областей 18s рРНК показал,что в них имеются взаимокомплементарные последовательности.

Третичная структура мРНК формируется главным образом за счет водородных связей, гидрофобного взаимодействия, геометрического и стерического ограничения, электрических сил.

Матричная РНК представляет собой метаболически активную и относительно не стабильную, короткоживущую форму. Так, мРНК микроорганизмов характеризуется бысрым обновлением, ивремя жизни её состовляет несколько минут. Вместе с тем для организмов, клетки которых содержат истинные ограниченые мембраной ядра, продолжительность жизни мРНК может достигать многих часов и даже несколько дней.

Стабильность мРНК может определяться различного рода модификациями её молекулы. Так, обнаружено, что 5 / -концевая последовательность мРНК вирусов и эукариот метилирована,или «заблокирована». Первым нуклеотидом в 5 / -терминальной структуре кэпа является 7-метилгуанин, который связан со следующим нуклеотидом 5 / -5 / -пирофосфатной связью. Второй нуклеотид метилирован по C-2 / -рибозного остатка, а в третьем нуклеотиде метильной группы может и не быть.

Ещё одной способностью мРНК является то, что на 3 / -концах многих молекул мРНК эукариотических клеток имеются относительно длинные последовательности адениловых нуклеотидов, которые присоединяются к молекулам мРНК с помощью специальных ферентов уже после завершения синтеза. Реакция протекает в клеточном ядре и цитоплазме.

На 3 / - и 5 / - концах мРНК модифицируемые последовательности составляют около 25% от общей длины молекулы. Считают, что 5 / – кэпы и 3 / -поли-А – последовательности необходимы либо для стабилизации мРНК, предохраняющей её от действия нуклеаз, либо для регулирования процесса трансляции.

РНК-интерференция

В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется. Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов. Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК. Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам. У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA, 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет. Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов.

Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию. Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами.У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов.

Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5" и 3" нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин.

Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК). Кроме того, интроны могут катализировать собственное вырезание. Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля. После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК. Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте - особом участке митохондрии протистов-кинетопластид (например, трипаносом).

Геномы, состоящие из РНК

Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и те, которые для размножения копируются в ДНК-копию и обратно в РНК (ретровирусы).

Многие вирусы, например, вирус гриппа, на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на:

«минус-цепь РНК», которая служит только геномом, а в качестве мРНК используется комплементарная ей молекула;

двухцепоченые вирусы.

Вироиды - другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина.

Ретровирусы и ретротранспозоны

У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома - ретротранспозоны.

Учёные насчитали несколько классов РНК — все они несут различную функциональную нагрузку и являются важными структурами, определяющими развитие и жизнь организма.

Первый, кто узнал, где содержится РНК, был Иоганн Мишер (1868 г). Изучая строение ядра, он обнаружил, что в нём содержится вещество, названное им нуклеином. Это были первые сведения об РНК, но впереди была почти вековая история изучения структуры и функций рибонуклеиной кислоты.

Быстрая навигация по статье

Матричная РНК

Учёных интересовала проблема передачи информации с ДНК в рибосомы (органеллы синтезирующие белок). Было определено, что в ядре клетки содержится матричная РНК, считывающая генную информацию с определённого участка ДНК. Потом она переносит скопированную форму (в виде определённой повторяющейся последовательности азотистых образований) в рибосомы.

Информационная РНК

В информационной РНК (иРНК), как правило, содержится до 1500 нуклеотидов. А её молекулярная масса может составлять от 260 до 1000 тыс. атомных масс. Эти сведения были открыты в 1957 г.

Транспортная РНК

Присоединившись к рибосоме, иРНК передаёт информацию на транспортную РНК (тРНК) (которая содержится в цитоплазме клетки). Транспортная РНК состоит из примерно 83 нуклеотидов. Она перемещает характерную для данного вида структуру аминокислоты в область синтеза в рибосоме.

Рибосомные РНК

В рибосоме, также содержится специализированный комплекс рибосомных РНК (рРНК), основной функцией которых является транспортировка информации с матричных РНК, где при этом, используются адаптивные молекулы тРНК, которые выступают как катализатор соединения прикрепившихся к рибосомам аминокислотам.

Формирование рРНК

В рРНК обычно содержится различное количество связанных нуклеотидов (оно может составлять от 120 до 3100 единиц). Формируется рРНК в клеточном ядре, практически всегда встречается в ядрышках, куда попадает из цитоплазмы. Там же генерируются и рибосомы, путём объединения белков с аналогичными признаками рРНК, а из ядра, через поры мембраны, переходят в цитоплазму.

Транспортно-матричные РНК

В цитоплазме содержится ещё один класс РНК - транспортно-матричная. По строению она похожа на тРНК, но кроме этого, она образует пептидные связи с рибосомами в случаях, когда происходит задержка образования аминокислот.

На клеточном уровне, где без мощного микроскопа ничего не увидишь, содержится несколько видов РНК, но возможно, это не последние открытия и учёные заглянут ещё глубже, что поможет человечеству управлять своей природой.

РНК,как и ДНК, представляет собой полинуклеотид. Структура нуклеотидов РНК с таковой ДНК, но имеются следующие отличия:

  • Вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар- рибоза;
  • Вместо азотистого основания тимина- урацил;
  • Молекула РНК обычно представлена одной цепочкой (у некоторых вирусов- двумя);

В клетках существуют три типа РНК: информационная,транспортная и рибосомальная.

Инфармационная РНК (и-РНК) представляет собой копию определённого участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Транспортные РНК (т-РНК)переносят аминокислоты из цитоплазмы в рибосомы.

Рибосомальная РНК (р-РНК) входит в состав рибосом. Считают, что р-РНК обеспечивает определённое пространственное взаиморасположение и-РНК и т-РНК.

Роль РНК в процессе реализации наследственной информации.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их нормального развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Сначала она транскрибируется в нуклеотидную последовательность молекулы мРНК, а затем транслируется в аминокислотную последовательность пептида на рибосомах с участием тРНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в особых ядерных структурах -хромосомах , которые отделены от цитоплазмы ядерной оболочкой. Необходимый для синтеза белков аппарат, состоящий из рибосом, тРНК, набора аминокислот и ферментов, находится в цитоплазме клетки.

Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе т-РНК, р-РНК или пептидов. Количество таких участков варьирует в разных генах.. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания м-РНК, из которой должны быть удалены неинформативные последовательности.

Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.

Относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.

В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания - аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.

Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.

Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции). При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.

При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.

Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.

Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.

Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.

Информационная РНК (иРНК)

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник - пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами . Остающиеся части иРНК называются экзонами . После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом . Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая - второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Транспортная РНК (тРНК)

Транспортная РНК - это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.

Функция тРНК - присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.

Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше). Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше). Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)

Рибосомная РНК (рРНК)

Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.

Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.

В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.

В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция - это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.

Для поддержания жизни в живом организме происходит множество процессов. Некоторые из них мы можем наблюдать - дыхание, прием пищи, избавление от продуктов жизнедеятельности, получение информации органами чувств и забывание этой информации. Но большая часть химических процессов скрыта от глаз.

Справка. Классификация
По-научному, обмен веществ это метаболизм.
Метаболизм обычно делят на две стадии:
в ходе катаболизма сложные органические молекулы распадаются на более простые, с получением энергии; (энергия тратится)
в процессах анаболизма затрачивается энергия на синтез из простых молекул сложных биомолекул. (энергия запасается)
Биомолекулы, как видно выше, делятся на малые молекулы и большие.
Малые:
Липиды (жиры), фосфолипиды, гликолипиды, стеролы, глицеролипиды,
Витамины
Гормоны, нейромедиаторы
Метаболиты
Большие:
Мономеры, олигомеры и полимеры.
Мономеры Олигомеры Биополимеры
Аминокислоты Олигопептиды Полипептиды, белки
Моносахариды Олигосахариды Полисахариды (крахмал, целлюлоза)
Нуклеотиды Олигонуклеотиды Полинуклеотиды, (ДНК, РНК)

В столбце биополимеры находятся полинуклеотиды. Именно здесь находится рибонуклеиновая кислота - объект статьи.

Рибонуклеиновые кислоты. Строение, назначение.

На рисунке показана молекула РНК.
Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют функции по хранению, передаче и реализации наследственной информации.
Сходство и отличие РНК и ДНК
Как видно, есть внешнее сходство с известной структурой молекулы ДНК (дезоксирибонуклеиновой кислотой).
Однако, РНК может иметь как двухцепочечную структуру, так и одноцепочечную.
Нуклеотиды (пяти- и шестиугольники на рисунке)
Кроме того, нить РНК состоит из четырех нуклеотидов (или азотистых оснований, что одно и то же): аденин, урацил, гуанин и цитозин.
Нить ДНК же состоит из другого набора нуклеотидов: аденин, гуанин, тимин и цитозин.
Химическое строение полинуклеотида РНК:

Как видим, имеются характерные нуклеотиды урацил (для РНК) и тимин (для ДНК).
Все 5 нуклеотидов на рисунке:


Шестиугольники на рисунках - это бензольные кольца, в которые, вместо углерода, встраиваются другие элементы, в данном случае, это азот.
Бензол. Для справки.
Химическая формула бензола - C6H6. Т.е. в каждом угле шестиугольника находится атом углерода. 3 дополнительные внутренние линии в шестиугольнике указывают на наличие двойных ковалентных связей между этими атомами углерода. Углерод - элемент 4 группы периодической таблицы Менделеева, следовательно, у него 4 электрона могут образовать ковалентную связь. На рисунке - одна связь - с электроном водорода, вторая - с электроном углерода слева и еще 2 - с 2 электронами углерода справа. Впрочем, физически существует единое электронное облако, охватывающее все 6 атомов углерода бензола.
Соединение азотистых оснований
Комплементарные нуклеотиды друг с другом сцепляются (гибридизуются) с помощью водородных связей. Аденин комплементарен урацилу, а гуанин - цитозину. Чем длиннее на данной РНК комплементарные участки, тем прочнее будет образуемая ими структура; наоборот, короткие участки будут нестабильными. Это определяет функцию конкретной РНК.
На рисунке фрагмент комплементарного участка РНК. Азотистые основания закрашены синим цветом

Структура РНК
Сцепление многих групп нуклеотидов образуют РНК-шпильки (первичная структура):


Множество шпилек в ленте сцепляются в двойную спираль. В развернутом виде такая структура напоминают дерево (Вторичная структура):


Спирали так же взаимодействуют друг с другом (третичная структура). Видно, как разные спирали соединены друг с другом:


Другие РНК сворачиваются аналогично. Напоминает набор лент (четвертичная структура).
Заключение
Для вычисления конформаций, которые примут РНК, по их первичной последовательности существуют