Математическая модель рлс. Приём вкр для публикации в эбс спбгэту "лэти" Способ применения и дозы

В результате проведенного анализа особенностей эксплуатации и функционирования судовой РЛС, на основании соответствующей эксплуатационной документации и опыта практического применения судовой РЛС в реальных условиях, в качестве основных режимов работы следует выделить:

    Режим ожидания (РО) - режим, при котором судовая РЛС может находиться в выключенном состоянии или во включенном, но не подготовленном к использованию основных функций.

    Режим подготовки судоводителя (РПС)

    Режим подготовки аппаратуры судовой РЛС к включению (РПА)- заключается в проведении внешнего осмотра.

    Режим настройки и регулировки аппаратуры (РНА)- заключается в проведении необходимых настроек и регулировок, проверке РЛС во включенном состоянии и проверки правильности ее функционирования при измерении навигационных параметров.

    Режим готовности судовой РЛС (РГ) - режим, при котором аппаратура судовой РЛС и судоводитель подготовлены к выполнению своих функций, аппаратура исправна и не занята измерениями навигационных параметров обнаруженных объектов.

    Режим радионавигационных определений (РРНО) - состояние, характеризующее выполнение основных задач - обнаружение объекта и измерения параметров его движения.

    Режим анализа навигационной обстановки (РАНО) - режим, при котором реализуется то количество наблюдений, которые необходимы для получения достоверной оценки измеряемого навигационного параметра.

    Режим принятия решения (РПР) - здесь производится наблюдение за потенциально опасными целями, а также принятие решения об изменении курса и скорости.

    Режим маневра (РМ) - в этом режиме происходит изменения курса судна и режима работы его двигателей.

    Режим подготовки к включению аппаратуры (РПВА)

    Режим восстановления аппаратуры (РВА)

    Режим воздействия помех (РВП) - режим работы РЛС при котором на её функционирование влияет появившаяся помеха искусственного или естественного происхождения.

На основании выявленных состояний (режимов) функционирования судовой РЛС мы можем построить структурно-эксплуатационную модель функционирования в виде следующего графа состояний и переходов (Рис. 1).

Структурно-эксплуатационная модель функционирования судовой РЛС.

Так как мы принимаем, что все потоки, переводящие систему из состояния в состояние простейшие, то есть функции распределения времени пребывания системы в этих являются экспоненциальными, то справедливы соотношения:

α 1 2 = l / T 1 2 ,

где а 12 -

применению,

Т 12 - среднее время между этими заявками;

Α 23 = l / T 23 ,

где а 23 - интенсивность подготовки судоводителя,

Т 23 - среднее время подготовки судоводителя;

α 13 = l / T 13 ,

где а 13 - интенсивность поступления заявок на подготовку РЛС к

применению,

Т 13 - среднее время между этими заявками;

α 1,11 =1/Т 1,11

где а 1,11 -

Т 13 - среднее время между этими режимами

α 34 =1/Т 34 ,

где α 34 - интенсивность перехода аппаратуры из режима подготовки в режим настройки и регулировки,

Т 34 - среднее время между этими режимами;

α 3,11 =1/Т 3,11,

где α 3,11 - частота появления помех в режиме подготовки аппаратуры,

Т 3 , 11 - среднее время появления таких помех;

α 4,5 =1/Т 4,5,

где α 45 - интенсивность прекращения режима настройки аппаратуры в режим готовности,

Т 45 - среднее время подготовки аппаратуры к включению;

α 4,12 =1/Т 4,12 ,

где α 4,12 - частота воздействия помех в режиме настройки и регулировки аппаратуры,

Т 4,12 - среднее время между такими воздействиями;

α 56 =1/Т 56 ,

где α 56 - интенсивность перехода аппаратуры из режима подготовки в режим радио- навигационных определений;

Т 56 - среднее время перехода в режим;

α 59 =1/Т 59 ,

где α 59 - интенсивность перехода аппаратуры из режима готовности в режим маневра;

Т 59 - среднее время прекращения режима готовности с переходом в

режим манёвра;

α 5,11 =1/Т 5;11

где α 5,11 - интенсивность перехода аппаратуры с режима готовности в режим восстановления;

Т 5,11 - средняя наработка на отказ в режиме готовности;

α 5,12 =1/Т 5,12

где а 5,12 - интенсивность между режимом ожидания и режимом воздействия аппаратуры;

Т 5,12 - среднее время между этими режимами;

α 67 =1/Т 67 ,

где α 67 - интенсивность анализа навигационных параметров;

Т 67 - среднее время между анализами;

α 6,11 =1/Т 6;11

где α 6,11 - интенсивность отказа аппаратуры в режиме навигационных определений;

Т 6,11 - средняя наработка на отказ в режиме в режиме навигационных определений;

α 6,12 =1/Т 6,12

где а 6,12 - интенсивность воздействия помех в режиме радионавигационных определений;

Т 6,12 - среднее время появления таких помех;

α 78 =1/Т 78 ,

где α 78 - интенсивность перехода аппаратуры из режима анализа в режим принятия решения;

Т 78 - среднее время перехода в режим принятия решения;

α 7,10 =1/Т 7;10

где α 7,10 - интенсивность перехода в режим подготовки к включению;

Т 7,10 - средняя время перехода в режим подготовки аппаратуры к включению;

α 8,9 =1/Т 8,9

где α 8,9 - интенсивность между режимом принятия решения и режимом маневра;

Т 8,9 - среднее время между этими режимами;

α 8,11 =1/Т 8;11

где α 8,11 - интенсивность отказа аппаратуры в режиме принятия решения;

Т 8,11 - средняя наработка на отказ в режиме принятия решения;

α 8,5 =1/Т 8;5

где α 8,5 - интенсивность перехода аппаратуры из режима принятия решения в режим готовности;

Т 8,5 - среднее время между этими режимами;

α 8,10 =1/Т 8;10

где α 8,10 - интенсивность перехода в режим подготовки к включению;

Т 8,10 - среднее время перехода в режим подготовки аппаратуры к включению;

α 9,10 =1/Т 9;10

где α 9,10 - интенсивность перехода из режима маневра в режим подготовки к включению;

Т 9,10 - среднее время перехода в режим подготовки аппаратуры к включению;

α 9,5 =1/Т 9;5

где α 9,5 - интенсивность перехода аппаратуры из режима маневров в режим готовности;

Т 9,5 - среднее время между этими режимами;

α 10,1 =1/Т 10;1

где α 10,1 - интенсивность перехода из режима подготовки к режиму ожидания;

Т 10,1 - среднее время перехода в режим ожидания;

α 11,3 =1/Т 11,3

где α 11,3 - интенсивность перехода аппаратуры из режима восстановления в режим подготовки аппаратуры;

Т 11,3 - среднее время между этими режимами;

α 12,4 =1/Т 12;4

где α 12,4 - интенсивность прекращения воздействия помех с переходом в режим настройки и регулировки аппаратуры;

Т 12,4 - среднее время между этими режимами;

α 12,5 =1/Т 12;5

где α 12,5 - интенсивность прекращения воздействия помех с переходом в режим готовности;

Т 12,5 - среднее время прекращения воздействия помех с переходом в режим готовности;

α 12,6 =1/Т 12;6

где α 12,6 - интенсивность прекращения воздействия помех с переходом в режим радионавигационных определений;

Т 12,6 - среднее время прекращения воздействия помех с переходом в режим радионавигационных определений;

Воспользовавшись данными практического применения РЛС и эксплуатационной документацией, зададим время выше перечисленных переходов для двух РЛС: РЛС №1 (лучшие значения) и РЛС №2 (худшие значения), а также найдём соответствующие им интенсивности. Все данные для более наглядного представления снесены в таблицу №1 и №2.

Таблица №1

РЛС №1

РЛС№2

T 1,2

T 2,3

T 3,4

T 3,11

T 4,5

T 4,12

T 5,6

T 5,9

T 5,12

T 5,11

T 6,7

T 6,12

T 6,11

T 7,8

T 7,10

T 8,9

T 8,11

T 8,10

T 8,5

T 9,10

T 9,5

T 10,1

T 11,3

T 12,4

T 12,5

T 12,6

Таблица №2

α i,j

РЛС№1

РЛС №2

α 1,2

α 2,3

α 3,4

α 3,11

α 4,5

α 4,12

α 5,6

α 5,9

α 5,12

α 5,11

α 6,7

α 6,12

α 6,11

α 7,8

α 7,10

α 8,9

α 8,11

α 8,10

α 8,5

α 9,10

α 9,5

α 10,1

α 11,3

α 12,4

α 12,5

α 12,6

Вывод: в данной части курсового проекта произведен анализ особенностей эксплуатации и функционирования судовой РЛС, по полученным результатам выделены основные режимы работы и установлено время пребывания в каждом режиме. На основании полученных данных просчитаны соотношения: α i , j =1/ T i , j

Радиолокационная станция П-15 (П-15МН) дециметрового диапазона волн предназначалась для обнаружения целей, летящих на средних, малых и предельно малых высотах. Принята на вооружение в 1955 году. Применялась в составе радиолокационных постов радиотехнических подразделений и в качестве станции разведки и целеуказания зенитных ракетных подразделений.

Станция П-15 смонтирована на одном автомобиле вместе с антенной системой и развертывалась в боевое положение за 10 мин. Агрегат питания транспортировался в прицепе.

Модель фирмы ZZ MODELL, базовая машина ЗиЛ-157 придавалась (вероятнее всего) от фирмы ICM и выполнена из пластика , по моему мнению, вполне не плохо. Особых хлопот при сборке не было. Кунг станции смоляной . В процессе сборки потребовалось повозиться с подгонкой задней стенки (там, где двойные двери). Домкраты тоже смоляные и довольно хрупки, один сломал. Антенно-фидерная система выполнена из фототравления .

Модель красилась акриловыми красками Tamia Color, поверх все задул матовым лаком Humbrol .

Из доработок представленной Вам модели принял решение сделать следующее:

  • инструментальные ящики, расположенные под задней стенкой кунга с обеих сторон;
  • второй топливный бак машины (в комплекте к модели по непонятной мне причине он один);
  • крепление для заднего номерного знака;
  • волновод на облучателе верхней антенны;
  • нижняя ступенька к лестнице на задней боковой стенке кунга.

Поднимать на домкратах высоко не стал, т.к. по инструкции - еще советской - достаточно только, чтобы на вывешенной технике колеса проворачивались, если она располагается на твердом покрытии. Есть еще такое, как для сохранения резины в летнее время колеса окрашиваются в белый цвет. Хотя в своей практике крашенные колеса я видел пару раз.


Из замеченных мною недочетов в схеме сборки обратил внимание на одну мелочь. В схеме держатели облучателей верхней и нижней антенн крепятся одинаково - трубками, к которым пристыкован радиочастотный кабель вниз. Хотя на реальной станции, на нижней антенне, он крепится наоборот (см. фото) Данную вещь я заметил случайно при попытке имитации радиочастотного кабеля, когда все было уже собранно. Так же не точно выполнена нижняя волноводная часть нижней антенны из фототравления - не соответствует оригиналу, пришлось исправлять.

Что касается степени соответствия всей модели оригиналу, то меня она вполне устроила. Хотя есть над чем поработать.

дипломная работа

2.1 Математическая модель радиолокационной обстановки

Радиолокационная обстановка характеризуется расположением и характером радиолокационных объектов (целей) в зоне действия РЛС, а также условиями окружающей среды, оказывающими влияние на распространение радиолокационных сигналов.

При распространении радиоволн следует учитывать явление дисперсии волн, т.е. зависимость фазовой скорости от частоты сигнала. Явление дисперсии наблюдается вследствие того, что коэффициент преломления атмосферы отличается от единицы, т.е. скорость электромагнитных волн в этом случае несколько меньше скорости света.

Другим существенным эффектом распространения радиоволн в реальной среде является искривление направления распространения или рефракция волн. Это явление может возникнуть в неоднородной среде, т.е. среде с изменяющимся от точки к точке коэффициентом преломления /4/.

Поскольку все эти эффекты слабо изменяют характеристики радиолокационного сигнала, то ими можно пренебречь.

Любая радиолокационная цель или объект характеризуется своим местоположением в пространстве, параметрами движения, эффективной отражающей поверхностью (ЭПР), а также функцией распределения ЭПР по поверхности объекта (для распределенных объектов).

Местоположение объекта (цели) характеризуется положением центра масс этого объекта (цели) в некоторой опорной системе координат /2/. В радиолокации наиболее часто применяют местную сферическую систему координат, начало которой находится в точке размещения антенны РЛС.

В наземной РЛС одна из осей координатной системы обычно совпадает с северным направлением меридиана, проходящего через позицию антенны РЛС, и местоположением цели Ц находится по результатам измерения наклонной дальности D, азимута б и угла места в (рисунок 2.1). При этом система неподвижна относительно земной поверхности.

Рисунок 2.1 - Местные сферические координаты

Измерение дальности до цели радиотехническими методами основано на постоянстве скорости и прямолинейности распространения радиоволн, которые выдерживаются в реальных условиях с достаточно большой точностью. Измерение дальности сводится к фиксации моментов излучения зондирующего сигнала и приема отраженного сигнала и измерению временного интервала между этими двумя моментами. Время запаздывания отраженного импульса:

где D - расстояние между РЛС и целью (рисунок 2.1), м;

c - скорость распространения радиоволн, м/с.

Для определения радиальной скорости движущегося объекта используют эффект Доплера /3/, который заключается в изменении частоты наблюдаемых колебаний, если источник и наблюдатель движутся друг относительно друга. Поэтому задача определения радиальной скорости сводится к определению частоты отраженных колебаний по сравнению с излучаемыми. Простейший и наиболее удобный для радиолокации вывод количественных соотношений при эффекте Доплера основан на рассмотрении процесса «передача - отражение - прием» как единого. Пусть в антенну поступают колебания:

Отраженный от неподвижной цели и запаздывающий на время t З сигнал на входе приемника будет иметь вид:

Здесь имеет место сдвиг фаз:

а также постоянный сдвиг фаз ц Ц, возникающий при отражении. При удалении от РЛС с постоянной радиальной скоростью дальность.

где V P - радиальная скорость цели (рисунок 2.2), м/с.

Рисунок 2.2 - Радиальная скорость цели относительно РЛС

Подставляя соответствующее значение из (1) в (4), получаем:

Частота отраженных колебаний, определяемая посредством производной фазы колебаний ц С по времени, равна:

Отсюда (8)

т.е. при удалении цели от РЛС частота отраженных колебаний ниже, чем излучаемых.

Величина

именуется доплеровской частотой.

Мощность отраженного сигнала на входе приемника РЛС зависит от целого ряда факторов /4/ и, прежде всего, от отражающих свойств цели. Первичная (падающая) радиоволна наводит на поверхности цели токи проводимости (для проводников) или токи смещения (для диэлектриков). Эти токи являются источником вторичного излучения в разных направлениях.

Отражающие свойства целей в РЛС принято оценивать эффективной площадью рассеяния (ЭПР) цели S 0:

где о - коэффициент деполяризации вторичного поля (0 ? о? 1);

P ОТР = S·D 0 ·П 1 - мощность отраженного сигнала, Вт;

П 1 - плотность потока мощности радиолокационного сигнала на сфере радиусом R в окрестности точки, где находится цель, Вт/м 2 ;

D 0 - значение диаграммы обратного рассеяния (ДОР) в направлении на радиолокатор;

S - полная площадь рассеяния цели, м 2 .

ЭПР цели представляет собой выраженный в квадратных метрах коэффициент, учитывающий отражающие свойства цели и зависящий от конфигурации цели, электрических свойств ее материала и отношения размеров цели к длине волны.

Данную величину можно рассматривать как некоторую эквивалентную цели нормальную радиолучу площадку площадью S 0 , которая, изотропно рассеивая всю падающую на нее от РЛС мощность волны, создает в точке приема ту же плотность потока мощности, что и реальная цель. Эффективная площадь рассеяния не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью.

Поскольку измерение ЭПР реальных объектов на практике затруднено из-за сложной формы последних, то иногда при расчетах оперируют с величиной отраженной от радиолокационного объекта энергией или отношением отраженной энергии к излучаемой.

Если радиолокационный объект является распределенным, т.е. состоит из множества независимых излучателей, то для нахождения ЭПР применяют одну из двух моделей отражения. В обеих моделях цель представляется в виде совокупности n точечных элементов, среди которых нет преобладающего отражателя (первая модель), либо имеется один преобладающий отражатель (вторая модель), который дает стабильный отраженный сигнал.

В технической радиолокационной литературе /2, 4/ по радиолокации используют обобщенную модель Сверлинга с распределением вида:

где - среднее значение ЭПР, м 2 .

Это выражение соответствует распределению 2 с 2k степенями свободы, где k определяет сложность модели отражения цели. При k = 1 получаем модель с экспоненциальным распределением ЭПР, а при k = 2 - модель цели в виде большого отражателя, меняющего в небольших пределах ориентацию в пространстве, или набора равноправных отражателей плюс наибольший.

Закон распределения амплитуд отраженного сигнала сводится к обобщенному закону Релея /4/:

где E - амплитуда отраженного сигнала, В;

E 0 - амплитуда отраженного сигнала от доминирующего излучателя, В;

у 2 - дисперсия ортогональных составляющих амплитуд, В 2 ;

I 0 - модифицированная функция Бесселя первого рода нулевого порядка:

В случае группового излучателя, состоящего из n точечных излучателей, диаграмма распределения ЭПР по азимутам имеет весьма сложную лепестковую структуру, зависящую от взаимного расположения отражающих элементов и относительно расстояний между ними. Поэтому групповые цели в зависимости от их углового положения относительно линии визирования могут давать значительные колебания мощности отраженных сигналов. Эти колебания происходят относительно среднего уровня, пропорционального среднему значению ЭПР при некогерентном сложении. Одновременно с колебаниями мощности отраженного сигнала наблюдаются случайные изменения времени его запаздывания и угла прихода.

Для движущихся распределенных целей возникает явление интерференции колебаний вторичного излучения от различных точек, в основе которого лежит изменение взаимного расположения точечных отражателей цели. Эффект Доплера является следствием данного эффекта. Для описания явления применяется диаграмма обратного рассеяния (ДОР), которая характеризует зависимость амплитуды отраженного сигнала от направления /2/.

Кроме того, при облучении целей возникает явление деполяризации зондирующего сигнала, т.е. поляризация отраженной и падающей волны не совпадают. Для реальных целей имеет место флуктуирующая поляризация, т.е. все элементы поляризационной матрицы /1/ являются случайными и необходимо воспользоваться матрицей числовых характеристик этих случайных величин.

При статистическом подходе к анализу радиолокационных объектов для описания функций последних применяется корреляционная функция или корреляционная матрица /8/, которые характеризуют изменение параметров объекта во времени. Недостатком данной модели является сложность расчетов из-за необходимости применения статистических методов и сложность организации ввода исходных параметров.

Исходя из вышесказанного, для описания радиолокационного объекта необходимо знать его положение в пространстве, протяженность по дальности и азимуту (для распределенных объектов), ЭПР и модель ее распределения, модель движения объекта или закон изменения доплеровского приращения частоты отраженного сигнала, число точечных излучателей (для групповых излучателей).

Алгоритм, эвристически строящий оптимальный граф для задачи децентрализованного поиска

В нашем подходе мы хотим понять как выглядят оптимальные структуры. Также проанализировать характер роста целевой функции. Дополнительно интересно нельзя ли выполнять поиск быстрее...

Графическое решение задач линейного программирования

Математическая модель - это математическое представление реальности. Математическое моделирование - это процесс построения и изучения математических моделей. Все естественные и общественные науки, использующие математический аппарат...

Задача о минимизации стоимости перегона транспортных средств

Измерение прогиба балки в MathCAD

Рассчитываем опорную реакцию: Исследуем влияние заданных сил и распределенных нагрузок на изгибающий момент участков: Строим эпюры поперечной силы Q и изгибающего момента М: 2...

Имитационная модель оценки и прогнозирования эффективности поиска подводной лодки

1. Pobn:=Nobn/N - основная формула. Вероятность обнаружения пл; 2. Nobn:=Nobn+1, если (t=tk3) или (t=tk4) - накопление обнаруженных пл; 3. tk3:=t-ln(Random)/Y2, если (t=tk1) и (tk2>tk1) - расчет момента вре-мени обнаружения пл средствами КПУГ без уклонения; 4. tk4:=t-ln(Random)/Y3...

Моделирование работы библиографической системы

Необходимо определить среднюю длину очереди к терминалу, вероятность отказа и коэффициенты загрузки ЭВМ. Определим переменные и уравнения математической модели: Кзаг.1, Кзаг...

Моделирование работы переговорного пункта

Определим переменные и уравнения математической модели. В данном случае: л1,2 - интенсивности поступления заявок на обычные и срочные переговоры; м - производительность канала; с - приведенная интенсивность; уравнения модели:...

Модель информационной системы отдела снабжения предприятия ООО "Бисквит"

При анализе и синтезе любых систем возникает задача построения модели, описывающей функционирование системы на языке математики, т.е. математической модели...

Обработка текстовой информации в среде Delphi

В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее...

Разработка программы, вычисляющей определенный интеграл методом трапеций для подынтегральной функции

Метод Рунге-Кутта 4-го порядка точности Смещение из точки в точку происходит не сразу, а через промежуточные точки. На практике наибольшее распространение получил метод 4-го порядка точности...

Сортировка методом подсчета

Сортировка подсчётом - алгоритм сортировки, в котором используется диапазон чисел сортируемого массива (списка) для подсчёта совпадающих элементов...

Ранее мы уже рассматривали модели радиолокационных станций.

Сегодня хочу представить Вам обзор модели РЛС П-18«Терек»(1РЛ131), в масштабе 1/72. Как и предыдущие, она производится украинской фирмой ZZ model. Набор имеет номер по каталогу 72003, и упакован в небольшую коробку из мягкого картона, со съемным верхом.

Внутри находятся детали из пластика, части из смолы, фототравление и инструкция.

В основе лежит пластиковая модель бортового грузовика «Урал» от ICM , от него и берется большая часть. Эта модель рассматривалась уже неоднократно, детально и подробно разбирались все недостатки и методы их устранения, так что, повторяться не вижу смысла. Можно только сказать, что правильная кабина и колеса производятся фирмой «Танкоград».


Из пластика так же даны некоторые элементы траверсы и подкосы антенны. Но их качество мне не очень понравилось, эти детали лучше заменить на проволоку, подходящего сечения.

Из смолы идет металлический фургон машины с антенно-мачтовым устройством (АМУ), боковые опоры, редуктор привода антенны.

К смоляным частям особых претензий нет, присутствует небольшое количество облоя, смещений и каверн нет.






В наборе присутствует две платы фототравления, которые, в основном, содержат элементы антенны РЛС П-18.

Качество травления не вызывает нареканий, но стоит учесть, что директоры антенны имеют круглое сечение, а здесь из-за издержек технологии получается квадратное сечение.

В принципе, можно оставить эти узлы как есть, но можно сделать кондуктор, и спаять директоры из проволоки, причем разного диаметра. Сама мачта, настоящей РЛС П-18, собирается из уголков с плоскими элементами усиления. Данный момент правильно передается фототравлением.

Инструкция, по сегодняшним меркам, очень примитивная. Да и при ближайшем рассмотрении, некоторые этапы сборки вызываю вопросы. Хотелось, чтобы производитель более детально показал сборку такого сложного узла, как антенна РЛС П-18.


Чтобы снять большинство вопросов по матчасти, я снял довольно подробный фото обзор walkaround в Техническом музее АвтоВАЗ в г.Тольятти.

Стоит еще добавить, что РЛС П-18«Терек»(1РЛ131) состоит из двух машин: аппаратной, с кузовом К-375 и машины с АМУ, которую мы сейчас и рассматриваем. При работе над моделью это стоит учесть и делать сразу две машины. При работе над аппаратной машиной, необходимо учесть расположение и размер люков на кузове. Для этого нужно найти хорошие фото, а при возможности провести замеры этого изделия.

В заключении стоит отметить, что данная модель явно не для начинающих моделистов и для получения достойного результата, здесь стоит запастись временем и терпением. Ее цена в интернет-магазинах составляет порядка 40$, что в конечном итоге не мало, при нынешнем курсе доллара.