Что является решением неравенства. Неравенства с одной переменной

Содержание урока

Определения и свойства

Неравенством мы будем называть два числовых или буквенных выражения, соединенных знаками >, <, ≥, ≤ или ≠.

Пример: 5 > 3

Данное неравенство говорит о том, что число 5 больше, чем число 3. Острый угол знака неравенства должен быть направлен в сторону меньшего числа. Это неравенство является верным, поскольку 5 больше, чем 3.

Если на левую чашу весов положить арбуз массой 5 кг, а на правую — арбуз массой 3 кг, то левая чаша перевесит правую, и экран весов покажет, что левая чаша тяжелее правой:

Если 5 > 3 , то 3 < 5 . То есть левую и правую часть неравенства можно поменять местами, изменив знак неравенства на противоположный. В ситуации с весами: большой арбуз можно положить на правую чашу, а маленький арбуз на левую. Тогда правая чаша перевесит левую, и экран покажет знак <

Если в неравенстве 5 > 3 , не трогая левую и правую часть, поменять знак на < , то получится неравенство 5 < 3 . Это неравенство не является верным, поскольку число 3 не может быть больше числа 5.

Числа, которые располагаются в левой и правой части неравенства, будем называть членами этого неравенства. Например, в неравенстве 5 > 3 членами являются числа 5 и 3.

Рассмотрим некоторые важные свойства для неравенства 5 > 3 .
В будущем эти свойства будут работать и для других неравенств.

Свойство 1.

Если к левой и правой части неравенства 5 > 3 прибавить или вычесть одно и то же число, то знак неравенства не изменится.

Например, прибавим к обеим частям неравенства число 4. Тогда получим:

Теперь попробуем вычесть из обеих частей неравенства 5 > 3 какое-нибудь число, скажем число 2

Видим, что левая часть по-прежнему больше правой.

Из данного свойства следует, что любой член неравенства можно перенести из одной части в другую часть, изменив знак этого члена. Знак неравенства при этом не изменится.

Например, перенесём в неравенстве 5 > 3 , член 5 из левой части в правую часть, изменив знак этого члена. После переноса члена 5 в правую часть, в левой части ничего не останется, поэтому запишем там 0

0 > 3 − 5

0 > −2

Видим, что левая часть по-прежнему больше правой.

Свойство 2.

Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства не изменится.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь положительное число, скажем на число 2. Тогда получим:

Видим, что левая часть по-прежнему больше правой.

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь число. Разделим их на 2

Видим, что левая часть по-прежнему больше правой.

Свойство 3.

Если обе части неравенства умножить или разделить на одно и то же отрицательное число , то знак неравенства изменится на противоположный.

Например, умножим обе части неравенства 5 > 3 на какое-нибудь отрицательное число, скажем на число −2 . Тогда получим:

Теперь попробуем разделить обе части неравенства 5 > 3 на какое-нибудь отрицательное число. Давайте разделим их на −1

Видим, что левая часть стала меньше правой. То есть знак неравенства изменился на противоположный.

Само по себе неравенство можно понимать, как некоторое условие. Если условие выполняется, то неравенство является верным. И наоборот, если условие не выполняется, то неравенство неверно.

Например, чтобы ответить на вопрос является ли верным неравенство 7 > 3 , нужно проверить выполняется ли условие «больше ли 7, чем 3» . Мы знаем, что число 7 больше, чем число 3. То есть условие выполнено, а значит и неравенство 7 > 3 верно.

Неравенство 8 < 6 не является верным, поскольку не выполняется условие «8 меньше, чем 6».

Другим способом определения верности неравенства является составление разности из левой и правой части данного неравенства. Если разность положительна, то левая часть больше правой части. И наоборот, если разность отрицательна, то левая часть меньше правой части. Более точно это правило выглядит следующим образом:

Число a больше числа b , если разность a − b положительна. Число a меньше числа b , если разность a − b отрицательна.

Например, мы выяснили, что неравенство 7 > 3 является верным, поскольку число 7 больше, чем число 3. Докажем это с помощью правила, приведённого выше.

Составим разность из членов 7 и 3. Тогда получим 7 − 3 = 4 . Согласно правилу, число 7 будет больше числа 3, если разность 7 − 3 окажется положительной. У нас она равна 4, то есть разность положительна. А значит число 7 больше числа 3.

Проверим с помощью разности верно ли неравенство 3 < 4 . Составим разность, получим 3 − 4 = −1 . Согласно правилу, число 3 будет меньше числа 4, если разность 3 − 4 окажется отрицательной. У нас она равна −1, то есть разность отрицательна. А значит число 3 меньше числа 4.

Проверим верно ли неравенство 5 > 8 . Составим разность, получим 5 − 8 = −3 . Согласно правилу, число 5 будет больше числа 8, если разность 5 − 8 окажется положительной. У нас разность равна −3, то есть она не является положительной. А значит число 5 не больше числа 3. Иными словами, неравенство 5 > 8 не является верным.

Строгие и нестрогие неравенства

Неравенства, содержащие знаки >, < называют строгими . А неравенства, содержащие знаки ≥, ≤ называют нестрогими .

Примеры строгих неравенства мы рассматривали ранее. Таковыми являются неравенства 5 > 3 , 7 < 9 .

Нестрогим, например, является неравенство 2 ≤ 5 . Данное неравенство читают следующим образом: «2 меньше или равно 5» .

Запись 2 ≤ 5 является неполной. Полная запись этого неравенства выглядит следующим образом:

2 < 5 или 2 = 5

Тогда становится очевидным, что неравенство 2 ≤ 5 состоит из двух условий: «два меньше пять» и «два равно пять» .

Нестрогое неравенство верно в том случае, если выполняется хотя бы одно из его условий. В нашем примере верным является условие «2 меньше 5» . Значит и само неравенство 2 ≤ 5 верно.

Пример 2 . Неравенство 2 ≤ 2 является верным, поскольку выполняется одно из его условий, а именно 2 = 2.

Пример 3 . Неравенство 5 ≤ 2 не является верным, поскольку не выполняется ни одно из его условий: ни 5 < 2 ни 5 = 2 .

Двойное неравенство

Число 3 больше, чем число 2 и меньше, чем число 4 . В виде неравенства это высказывание можно записать так: 2 < 3 < 4 . Такое неравенство называют двойным.

Двойное неравенство может содержать знаки нестрогих неравенств. К примеру, если число 5 больше или равно, чем число 2, и меньше или равно, чем число 7 , то можно записать, что 2 ≤ 5 ≤ 7

Чтобы правильно записать двойное неравенство, сначала записывают член находящийся в середине, затем член находящийся слева, затем член находящийся справа.

Например, запишем, что число 6 больше, чем число 4, и меньше, чем число 9.

Сначала записываем 6

Слева записываем, что это число больше, чем число 4

Справа записываем, что число 6 меньше, чем число 9

Неравенство с переменной

Неравенство, как и равенство может содержать переменную.

Например, неравенство x > 2 содержит переменную x . Обычно такое неравенство нужно решить, то есть выяснить при каких значениях x данное неравенство становится верным.

Решить неравенство означает найти такие значения переменной x , при которых данное неравенство становится верным.

Значение переменной, при котором неравенство становится верным, называется решением неравенства .

Неравенство x > 2 становится верным при x = 3, x = 4, x = 5, x = 6 и так далее до бесконечности. Видим, что это неравенство имеет не одно решение, а множество решений.

Другими словами, решением неравенства x > 2 является множество всех чисел, бóльших 2. При этих числах неравенство будет верным. Примеры:

3 > 2

4 > 2

5 > 2

Число 2, располагающееся в правой части неравенства x > 2 , будем называть границей данного неравенства. В зависимости от знака неравенства, граница может принадлежать множеству решений неравенства либо не принадлежать ему.

В нашем примере граница неравенства не принадлежит множеству решений, поскольку при подстановке числа 2 в неравенство x > 2 получается не верное неравенство 2 > 2 . Число 2 не может быть больше самого себя, поскольку оно равно самому себе (2 = 2) .

Неравенство x > 2 является строгим. Его можно прочитать так: «x строго больше 2″ . То есть все значения, принимаемые переменной x должны быть строго больше 2. В противном случае, неравенство верным не будет.

Если бы нам было дано нестрогое неравенство x ≥ 2 , то решениями данного неравенства были бы все числа, которые больше 2, в том числе и само число 2. В этом неравенстве граница 2 принадлежит множеству решений неравенства, поскольку при подстановке числа 2 в неравенство x ≥ 2 получается верное неравенство 2 ≥ 2 . Ранее было сказано, что нестрогое неравенство является верным, если выполняется хотя бы одно из его условий. В неравенстве 2 ≥ 2 выполняется условие 2 = 2 , поэтому и само неравенство 2 ≥ 2 верно.

Как решать неравенства

Процесс решения неравенств во многом схож с процессом решения уравнений. При решении неравенств мы будем применять свойства, которые изучили вначале данного урока, такие как: перенос слагаемых из одной части неравенства в другую часть, меняя знак; умножение (или деление) обеих частей неравенства на одно и то же число.

Эти свойства позволяют получить неравенство, которое равносильно исходному. Равносильными называют неравенства, решения которых совпадают.

Решая уравнения мы выполняли тождественные преобразования до тех пор, пока в левой части уравнения не оставалась переменная, а в правой части значение этой переменной (например: x = 2, x = 5 ). Иными словами, заменяли исходное уравнение на равносильное ему уравнение до тех пор, пока не получалось уравнение вида x = a , где a значение переменной x . В зависимости от уравнения, корней могло быть один, два, бесконечное множество, либо не быть совсем.

А при решении неравенств мы будем заменять исходное неравенство на равносильное ему неравенство до тех пор, пока в левой части не останется переменная этого неравенства, а в правой части его граница.

Пример 1 . Решить неравенство 2x > 6

Итак, нужно найти такие значения x , при подстановке которых в 2x > 6 получится верное неравенство.

Вначале данного урока было сказано, что если обе части неравенства разделить на какое-нибудь положительное число, то знак неравенства не изменится. Если применить это свойство к неравенству, содержащему переменную, то получится неравенство равносильное исходному.

В нашем случае, если мы разделим обе части неравенства 2x > 6 на какое-нибудь положительное число, то получится неравенство, которое равносильно исходному неравенству 2x > 6.

Итак, разделим обе части неравенства на 2.

В левой части осталась переменная x , а правая часть стала равна 3. Получилось равносильное неравенство x > 3. На этом решение завершается, поскольку в левой части осталась переменная, а в правой части граница неравенства.

Теперь можно сделать вывод, что решениями неравенства x > 3 являются все числа, которые больше 3. Это числа 4, 5, 6, 7 и так далее до бесконечности. При этих значениях неравенство x > 3 будет верным.

4 > 3

5 > 3

6 > 3

7 > 3

Отметим, что неравенство x > 3 является строгим. «Переменная x строго больше трёх».

А поскольку неравенство x > 3 равносильно исходному неравенству 2x > 6 , то их решения будут совпадать. Иначе говоря, значения, которые подходят неравенству x > 3, будут подходить и неравенству 2x > 6. Покажем это.

Возьмём, например, число 5 и подставим его сначала в полученное нами равносильное неравенство x > 3 , а потом в исходное 2x > 6 .

Видим, что в обоих случаях получается верное неравенство.

После того, как неравенство решено, ответ нужно записать в виде так называемого числового промежутка следующим образом:

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат числовому промежутку от трёх до плюс бесконечности.

Иначе говоря, все числа, начиная от трёх до плюс бесконечности являются решениями неравенства x > 3 . Знак в математике означает бесконечность.

Учитывая, что понятие числового промежутка очень важно, остановимся на нём подробнее.

Числовые промежутки

Числовым промежутком называют множество чисел на координатной прямой, которое может быть описано с помощью неравенства.

Допустим, мы хотим изобразить на координатной прямой множество чисел от 2 до 8. Для этого сначала на координатной прямой отмечаем точки с координатами 2 и 8, а затем выделяем штрихами ту область, которая располагается между координатами 2 и 8. Эти штрихи будут играть роль чисел, располагающихся между числами 2 и 8

Числа 2 и 8 назовём границами числового промежутка. Рисуя числовой промежуток, точки для его границ изображают не в виде точек как таковых, а в виде кружков, которые можно разглядеть.

Границы могут принадлежать числовому промежутку либо не принадлежать ему.

Если границы не принадлежат числовому промежутку, то они изображаются на координатной прямой в виде пустых кружков .

Если границы принадлежат числовому промежутку, то кружки необходимо закрасить .

На нашем рисунке кружки были оставлены пустыми. Это означало, что границы 2 и 8 не принадлежат числовому промежутку. Значит в наш числовой промежуток будут входить все числа от 2 до 8, кроме чисел 2 и 8.

Если мы хотим включить границы 2 и 8 в числовой промежуток, то кружки необходимо закрасить:

В данном случае в числовой промежуток будут входить все числа от 2 до 8, включая числа 2 и 8.

На письме числовой промежуток обозначается указанием его границ с помощью круглых или квадратных скобок.

Если границы не принадлежат круглыми скобками .

Если границы принадлежат числовому промежутку, то границы обрамляются квадратными скобками .

На рисунке представлено два числовых промежутка от 2 до 8 с соответствующими обозначениями:

На первом рисунке числовой промежуток обозначен с помощью круглых скобок , поскольку границы 2 и 8 не принадлежат этому числовому промежутку.

На втором рисунке числовой промежуток обозначен с помощью квадратных скобок , поскольку границы 2 и 8 принадлежат этому числовому промежутку.

С помощью числовых промежутков можно записывать ответы к неравенствам. Например, ответ к двойному неравенству 2 ≤ x ≤ 8 записывается так:

x ∈ [ 2 ; 8 ]

То есть сначала записывают переменную, входящую в неравенство, затем с помощью знака принадлежности ∈ указывают к какому числовому промежутку принадлежат значения этой переменной. В данном случае выражение x ∈ [ 2 ; 8 ] указывает на то, что переменная x, входящая в неравенство 2 ≤ x ≤ 8, принимает все значения в промежутке от 2 до 8 включительно. При этих значениях неравенство будет верным.

Обратим внимание на то, что ответ записан с помощью квадратных скобок, поскольку границы неравенства 2 ≤ x ≤ 8 , а именно числа 2 и 8 принадлежат множеству решений этого неравенства.

Множество решений неравенства 2 ≤ x ≤ 8 также можно изобразить с помощью координатной прямой:

Здесь границы числового промежутка 2 и 8 соответствуют границам неравенства 2 ≤ x x 2 ≤ x ≤ 8 .

В некоторых источниках границы, которые не принадлежат числовому промежутку, называют открытыми .

Открытыми их называют по той причине, что числовой промежуток остаётся открытым из-за того, что его границы не принадлежат этому числовому промежутку. Пустой кружок на координатной прямой математики называют выколотой точкой . Выколоть точку значит исключить её из числового промежутка или из множества решений неравенства.

А в случае, когда границы принадлежат числовому промежутку, их называют закрытыми (или замкнутыми), поскольку такие границы закрывают (замыкают) собой числовой промежуток. Закрашенный кружок на координатной прямой также говорит о закрытости границ.

Существуют разновидности числовых промежутков. Рассмотрим каждый из них.

Числовой луч

Числовым лучом x ≥ a , где a x — решение неравенства.

Пусть a = 3 . Тогда неравенство x ≥ a примет вид x ≥ 3 . Решениями данного неравенства являются все числа, которые больше 3, включая само число 3.

Изобразим числовой луч, заданный неравенством x ≥ 3, на координатной прямой. Для этого отметим на ней точку с координатой 3, а всю оставшуюся справа от неё область выделим штрихами. Выделяется именно правая часть, поскольку решениями неравенства x ≥ 3 являются числа, бóльшие 3. А бóльшие числа на координатной прямой располагаются правее

x ≥ 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≥ 3 .

Точка 3, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≥ 3 принадлежит множеству его решений.

На письме числовой луч, заданный неравенством x ≥ a,

[ a ; +∞)

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница числового луча принадлежит ему, а другая нет, поскольку бесконечность сама по себе границ не имеет и подразумевается, что по ту сторону нет числа, замыкающего этот числовой луч.

Учитывая то, что одна из границ числового луча закрыта, данный промежуток часто называют закрытым числовым лучом .

Запишем ответ к неравенству x ≥ 3 с помощью обозначения числового луча. У нас переменная a равна 3

x ∈ [ 3 ; +∞)

В этом выражении говорится, что переменная x , входящая в неравенство x ≥ 3, принимает все значения от 3 до плюс бесконечности.

Иначе говоря, все числа от 3 до плюс бесконечности, являются решениями неравенства x ≥ 3 . Граница 3 принадлежит множеству решений, поскольку неравенство x ≥ 3 является нестрогим.

Закрытым числовым лучом также называют числовой промежуток, который задаётся неравенством x ≤ a . Решениями неравенства x ≤ a a , включая само число a .

К примеру, если a x ≤ 2 . На координатной прямой граница 2 будет изображаться закрашенным кружком, а вся область, находящаяся слева , будет выделена штрихами. В этот раз выделяется левая часть, поскольку решениями неравенства x ≤ 2 являются числа, меньшие 2. А меньшие числа на координатной прямой располагаются левее

x ≤ 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x ≤ 2 .

Точка 2, являющаяся границей числового луча, изображена в виде закрашенного кружка, поскольку граница неравенства x ≤ 2 принадлежит множеству его решений.

Запишем ответ к неравенству x ≤ 2 с помощью обозначения числового луча:

x ∈ (−∞ ; 2 ]

x ≤ 2. Граница 2 принадлежит множеству решений, поскольку неравенство x ≤ 2 является нестрогим.

Открытый числовой луч

Открытым числовым лучом называют числовой промежуток, который задаётся неравенством x > a , где a — граница данного неравенства, x — решение неравенства.

Открытый числовой луч во многом похож на закрытый числовой луч. Различие в том, что граница a не принадлежит промежутку, как и граница неравенства x > a не принадлежит множеству его решений.

Пусть a = 3 . Тогда неравенство примет вид x > 3 . Решениями данного неравенства являются все числа, которые больше 3, за исключением числа 3

На координатной прямой граница открытого числового луча, заданного неравенством x > 3, будет изображаться в виде пустого кружка. Вся область, находящаяся справа, будет выделена штрихами:

Здесь точка 3 соответствует границе неравенства x > 3 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x > 3 . Точка 3, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x > 3 не принадлежит множеству его решений.

x > a , обозначается следующим образом:

(a ; +∞)

Круглые скобки указывают на то, что границы открытого числового луча не принадлежат ему.

Запишем ответ к неравенству x > 3 с помощью обозначения открытого числового луча:

x ∈ (3 ; +∞)

В этом выражении говорится, что все числа от 3 до плюс бесконечности, являются решениями неравенства x > 3 . Граница 3 не принадлежит множеству решений, поскольку неравенство x > 3 является строгим.

Открытым числовым лучом также называют числовой промежуток, который задаётся неравенством x < a , где a — граница данного неравенства, x — решение неравенства. Решениями неравенства x < a являются все числа, которые меньше a , исключая число a .

К примеру, если a = 2 , то неравенство примет вид x < 2 . На координатной прямой граница 2 будет изображаться пустым кружком, а вся область, находящаяся слева, будет выделена штрихами:

Здесь точка 2 соответствует границе неравенства x < 2 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства x < 2 . Точка 2, являющаяся границей открытого числового луча, изображена в виде пустого кружка, поскольку граница неравенства x < 2 не принадлежит множеству его решений.

На письме открытый числовой луч, заданный неравенством x < a , обозначается следующим образом:

(−∞ ; a )

Запишем ответ к неравенству x < 2 с помощью обозначения открытого числового луча:

x ∈ (−∞ ; 2)

В этом выражении говорится, что все числа от минус бесконечности до 2, являются решениями неравенства x < 2. Граница 2 не принадлежит множеству решений, поскольку неравенство x < 2 является строгим.

Отрезок

Отрезком a ≤ x ≤ b , где a и b x — решение неравенства.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x ≤ b примет вид 2 ≤ x ≤ 8 . Решениями неравенства 2 ≤ x ≤ 8 являются все числа, которые больше 2 и меньше 8. При этом границы неравенства 2 и 8 принадлежат множеству его решений, поскольку неравенство 2 ≤ x ≤ 8 является нестрогим.

Изобразим отрезок, заданный двойным неравенством 2 ≤ x ≤ 8 на координатной прямой. Для этого отметим на ней точки с координатами 2 и 8, а располагающуюся между ними область выделим штрихами:

x ≤ 8 , а выделенная штрихами область соответствует множеству значений x x ≤ 8 . Точки 2 и 8, являющиеся границами отрезка, изображены в виде закрашенных кружков, поскольку границы неравенства 2 ≤ x ≤ 8 принадлежат множеству его решений.

На письме отрезок, заданный неравенством a ≤ x ≤ b обозначается следующим образом:

[ a ; b ]

Квадратные скобки с обеих сторон указывают на то, что границы отрезка принадлежат ему. Запишем ответ к неравенству 2 ≤ x

x ∈ [ 2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8 включительно, являются решениями неравенства 2 ≤ x ≤ 8 .

Интервал

Интервалом называют числовой промежуток, который задаётся двойным неравенством a < x < b , где a и b — границы данного неравенства, x — решение неравенства.

Пусть a = 2 , b = 8 . Тогда неравенство a < x < b примет вид 2 < x < 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая числа 2 и 8.

Изобразим интервал на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 < x < 8 , а выделенная штрихами область соответствует множеству значений x < x < 8 . Точки 2 и 8, являющиеся границами интервала, изображены в виде пустых кружков, поскольку границы неравенства 2 < x < 8 не принадлежат множеству его решений.

На письме интервал, заданный неравенством a < x < b, обозначается следующим образом:

(a ; b )

Круглые скобки с обеих сторон указывают на то, что границы интервала не принадлежат ему. Запишем ответ к неравенству 2 < x < 8 с помощью этого обозначения:

x ∈ (2 ; 8)

В этом выражении говорится, что все числа от 2 до 8, исключая числа 2 и 8, являются решениями неравенства 2 < x < 8 .

Полуинтервал

Полуинтервалом называют числовой промежуток, который задаётся неравенством a ≤ x < b , где a и b — границы данного неравенства, x — решение неравенства.

Полуинтервалом также называют числовой промежуток, который задаётся неравенством a < x ≤ b .

Одна из границ полуинтервала принадлежит ему. Отсюда и название этого числового промежутка.

В ситуации с полуинтервалом a ≤ x < b ему (полуинтервалу) принадлежит левая граница.

А в ситуации с полуинтервалом a < x ≤ b ему принадлежит правая граница.

Пусть a = 2 , b = 8 . Тогда неравенство a ≤ x < b примет вид 2 ≤ x < 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, включая число 2, но исключая число 8.

Изобразим полуинтервал 2 ≤ x < 8 на координатной прямой:

x < 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 ≤ x < 8 .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде закрашенного кружка, поскольку левая граница неравенства 2 ≤ x < 8 принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде пустого кружка, поскольку правая граница неравенства 2 ≤ x < 8 не принадлежит множеству его решений.

a ≤ x < b, обозначается следующим образом:

[ a ; b )

Видно, что с одной стороны граница обрамлена квадратной скобкой, а с другой круглой. Это связано с тем, что одна граница полуинтервала принадлежит ему, а другая нет. Запишем ответ к неравенству 2 ≤ x < 8 с помощью этого обозначения:

x ∈ [ 2 ; 8)

В этом выражении говорится, что все числа от 2 до 8, включая число 2, но исключая число 8, являются решениями неравенства 2 ≤ x < 8 .

Аналогично на координатной прямой можно изобразить полуинтервал, заданный неравенством a < x ≤ b . Пусть a = 2 , b = 8 . Тогда неравенство a < x ≤ b примет вид 2 < x ≤ 8 . Решениями этого двойного неравенства являются все числа, которые больше 2 и меньше 8, исключая число 2, но включая число 8.

Изобразим полуинтервал 2 < x ≤ 8 на координатной прямой:

Здесь точки 2 и 8 соответствуют границам неравенства 2 < x ≤ 8 , а выделенная штрихами область соответствует множеству значений x , которые являются решениями неравенства 2 < x ≤ 8 .

Точка 2, являющаяся левой границей полуинтервала, изображена в виде пустого кружка, поскольку левая граница неравенства 2 < x ≤ 8 не принадлежит множеству его решений.

А точка 8, являющаяся правой границей полуинтервала, изображена в виде закрашенного кружка, поскольку правая граница неравенства 2 < x ≤ 8 принадлежит множеству его решений.

На письме полуинтервал, заданный неравенством a < x ≤ b, обозначается так: (a ; b ] . Запишем ответ к неравенству 2 < x ≤ 8 с помощью этого обозначения:

x ∈ (2 ; 8 ]

В этом выражении говорится, что все числа от 2 до 8, исключая число 2, но включая число 8, являются решениями неравенства 2 < x ≤ 8 .

Изображение числовых промежутков на координатной прямой

Числовой промежуток может быть задан с помощью неравенства или с помощью обозначения (круглых или квадратных скобок). В обоих случаях нужно суметь изобразить этот числовой промежуток на координатной прямой. Рассмотрим несколько примеров.

Пример 1 . Изобразить числовой промежуток, заданный неравенством x > 5

Вспоминаем, что неравенством вида x > a задаётся открытый числовой луч. В данном случае переменная a равна 5. Неравенство x > 5 строгое, поэтому граница 5 будет изображаться в виде пустого кружкá. Нас интересуют все значения x, которые больше 5, поэтому вся область справа будет выделена штрихами:

Пример 2 . Изобразить числовой промежуток (5; +∞) на координатной прямой

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью неравенства, а с помощью обозначения числового промежутка.

Граница 5 обрамлена круглой скобкой, значит она не принадлежит промежутку. Соответственно, кружок остаётся пустым.

Символ +∞ указывает, что нас интересуют все числа, которые больше 5. Соответственно, вся область справа от границы 5 выделяется штрихами:

Пример 3 . Изобразить числовой промежуток (−5; 1) на координатной прямой.

Круглыми скобками с обеих сторон обозначаются интервалы. Границы интервала не принадлежат ему, поэтому границы −5 и 1 будут изображаться на координатной прямой в виде пустых кружков. Вся область между ними будет выделена штрихами:

Пример 4 . Изобразить числовой промежуток, заданный неравенством −5 < x < 1

Это тот же числовой промежуток, который мы изобразили в предыдущем примере. Но в этот раз он задан не с помощью обозначения промежутка, а с помощью двойного неравенства.

Неравенством вида a < x < b , задаётся интервал. В данном случае переменная a равна −5 , а переменная b равна единице. Неравенство −5 < x < 1 строгое, поэтому границы −5 и 1 будут изображаться в виде пустых кружка. Нас интересуют все значения x, которые больше −5 , но меньше единицы, поэтому вся область между точками −5 и 1 будет выделена штрихами:

Пример 5 . Изобразить на координатной прямой числовые промежутки [-1; 2] и

В этот раз изобразим на координатной прямой сразу два промежутка.

Квадратными скобками с обеих сторон обозначаются отрезки. Границы отрезка принадлежат ему, поэтому границы отрезков [-1; 2] и будут изображаться на координатной прямой в виде закрашенных кружков. Вся область между ними будет выделена штрихами.

Чтобы хорошо увидеть промежутки [−1; 2] и , первый можно изобразить на верхней области, а второй на нижней. Так и поступим:

Пример 6 . Изобразить на координатной прямой числовые промежутки [-1; 2) и (2; 5]

Квадратной скобкой с одной стороны и круглой с другой обозначаются полуинтервалы. Одна из границ полуинтервала принадлежат ему, а другая нет.

В случае с полуинтервалом [-1; 2) левая граница будет принадлежать ему, а правая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

А в случае с полуинтервалом (2; 5] ему будет принадлежать только правая граница, а левая нет. Значит левая граница будет изображаться в виде закрашенного кружка. Правая же граница будет изображаться в виде пустого кружка.

Изобразим промежуток [-1; 2) на верхней области координатной прямой, а промежуток (2; 5] — на нижней:

Примеры решения неравенств

Неравенство, которое путём тождественных преобразований можно привести к виду ax > b (или к виду ax < b ), будем называть линейным неравенством с одной переменной .

В линейном неравенстве ax > b , x — это переменная, значения которой нужно найти, а — коэффициент этой переменной, b — граница неравенства, которая в зависимости от знака неравенства может принадлежать множеству его решений либо не принадлежать ему.

Например, неравенство 2x > 4 является неравенством вида ax > b . В нём роль переменной a играет число 2, роль переменной b (границы неравенства) играет число 4.

Неравенство 2x > 4 можно сделать ещё проще. Если мы разделим обе его части на 2, то получим неравенство x > 2

Получившееся неравенство x > 2 также является неравенством вида ax > b , то есть линейным неравенством с одной переменной. В этом неравенстве роль переменной a играет единица. Ранее мы говорили, что коэффициент 1 не записывают. Роль переменной b играет число 2.

Отталкиваясь от этих сведений, попробуем решить несколько простых неравенств. В ходе решения мы будем выполнять элементарные тождественные преобразования с целью получить неравенство вида ax > b

Пример 1 . Решить неравенство x − 7 < 0

Прибавим к обеим частям неравенства число 7

x − 7 + 7 < 0 + 7

В левой части останется x , а правая часть станет равна 7

x < 7

Путём элементарных преобразований мы привели неравенство x − 7 < 0 к равносильному неравенству x < 7 . Решениями неравенства x < 7 являются все числа, которые меньше 7. Граница 7 не принадлежит множеству решений, поскольку неравенство строгое.

Когда неравенство приведено к виду x < a (или x > a ), его можно считать уже решённым. Наше неравенство x − 7 < 0 тоже приведено к такому виду, а именно к виду x < 7 . Но в большинстве школ требуют, чтобы ответ был записан с помощью числового промежутка и проиллюстрирован на координатной прямой.

Запишем ответ с помощью числового промежутка. В данном случае ответом будет открытый числовой луч (вспоминаем, что числовой луч задаётся неравенством x < a и обозначается как (−∞ ; a )

x ∈ (−∞ ; 7)

На координатной прямой граница 7 будет изображаться в виде пустого кружка, а вся область, находящаяся слева от границы, будет выделена штрихами:

Для проверки возьмём любое число из промежутка (−∞ ; 7) и подставим его в неравенство x < 7 вместо переменной x . Возьмём, например, число 2

2 < 7

Получилось верное числовое неравенство, значит и решение верное. Возьмём ещё какое-нибудь число, например, число 4

4 < 7

Получилось верное числовое неравенство. Значит решение верное.

А поскольку неравенство x < 7 равносильно исходному неравенству x − 7 < 0 , то решения неравенства x < 7 будут совпадать с решениями неравенства x − 7 < 0 . Подставим те же тестовые значения 2 и 4 в неравенство x − 7 < 0

2 − 7 < 0

−5 < 0 — Верное неравенство

4 − 7 < 0

−3 < 0 Верное неравенство

Пример 2 . Решить неравенство −4x < −16

Разделим обе части неравенства на −4. Не забываем, что при делении обеих частей неравенства на отрицательное число , знак неравенства меняется на противоположный :

Мы привели неравенство −4x < −16 к равносильному неравенству x > 4 . Решениями неравенства x > 4 будут все числа, которые больше 4. Граница 4 не принадлежит множеству решений, поскольку неравенство строгое.

x > 4 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 3 . Решить неравенство 3y + 1 > 1 + 6y

Перенесём 6y из правой части в левую часть, изменив знак. А 1 из левой части перенесем в правую часть, опять же изменив знак:

3y − 6y > 1 − 1

Приведём подобные слагаемые:

−3y > 0

Разделим обе части на −3. Не забываем, что при делении обеих частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства y < 0 являются все числа, меньшие нуля. Изобразим множество решений неравенства y < 0 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 4 . Решить неравенство 5(x − 1) + 7 ≤ 1 − 3(x + 2)

Раскроем скобки в обеих частях неравенства:

Перенесем −3x из правой части в левую часть, изменив знак. Члены −5 и 7 из левой части перенесем в правую часть, опять же изменив знаки:

Приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 8

Решениями неравенства являются все числа, которые меньше . Граница принадлежит множеству решений, поскольку неравенство является нестрогим.

Пример 5 . Решить неравенство

Умножим обе части неравенства на 2. Это позволит избавиться от дроби в левой части:

Теперь перенесем 5 из левой части в правую часть, изменив знак:

После приведения подобных слагаемых, получим неравенство 6x > 1 . Разделим обе части этого неравенства на 6. Тогда получим:

Решениями неравенства являются все числа, которые больше . Граница не принадлежит множеству решений, поскольку неравенство является строгим.

Изобразим множество решений неравенства на координатной прямой и запишем ответ в виде числового промежутка:

Пример 6 . Решить неравенство

Умножим обе части на 6

После приведения подобных слагаемых, получим неравенство 5x < 30 . Разделим обе части этого неравенства на 5

Решениями неравенства x < 6 являются все числа, которые меньше 6. Граница 6 не принадлежит множеству решений, поскольку неравенство является x < 6 строгим.

Изобразим множество решений неравенства x < 6 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 7 . Решить неравенство

Умножим обе части неравенства на 10

В получившемся неравенстве раскроем скобки в левой части:

Перенесем члены без x в правую часть

Приведем подобные слагаемые в обеих частях:

Разделим обе части получившегося неравенства на 10

Решениями неравенства x ≤ 3,5 являются все числа, которые меньше 3,5. Граница 3,5 принадлежит множеству решений, поскольку неравенство является x ≤ 3,5 нестрогим.

Изобразим множество решений неравенства x ≤ 3,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 8 . Решить неравенство 4 < 4x < 20

Чтобы решить такое неравенство, нужно переменную x освободить от коэффициента 4. Тогда мы сможем сказать в каком промежутке находится решение данного неравенства.

Чтобы освободить переменную x от коэффициента, можно разделить член 4x на 4. Но правило в неравенствах таково, что если мы делим член неравенства на какое-нибудь число, то тоже самое надо сделать и с остальными членами, входящими в данное неравенство. В нашем случае на 4 нужно разделить все три члена неравенства 4 < 4x < 20

Решениями неравенства 1 < x < 5 являются все числа, которые больше 1 и меньше 5. Границы 1 и 5 не принадлежат множеству решений, поскольку неравенство 1 < x < 5 является строгим.

Изобразим множество решений неравенства 1 < x < 5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 9 . Решить неравенство −1 ≤ −2x ≤ 0

Разделим все члены неравенства на −2

Получили неравенство 0,5 ≥ x ≥ 0 . Двойное неравенство желательно записывать так, чтобы меньший член располагался слева, а больший справа. Поэтому перепишем наше неравенство следующим образом:

0 ≤ x ≤ 0,5

Решениями неравенства 0 ≤ x ≤ 0,5 являются все числа, которые больше 0 и меньше 0,5. Границы 0 и 0,5 принадлежат множеству решений, поскольку неравенство 0 ≤ x ≤ 0,5 является нестрогим.

Изобразим множество решений неравенства 0 ≤ x ≤ 0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 10 . Решить неравенство

Умножим обе неравенства на 12

Раскроем скобки в получившемся неравенстве и приведем подобные слагаемые:

Разделим обе части получившегося неравенства на 2

Решениями неравенства x ≤ −0,5 являются все числа, которые меньше −0,5. Граница −0,5 принадлежит множеству решений, поскольку неравенство x ≤ −0,5 является нестрогим.

Изобразим множество решений неравенства x ≤ −0,5 на координатной прямой и запишем ответ в виде числового промежутка:

Пример 11 . Решить неравенство

Умножим все части неравенства на 3

Теперь из каждой части получившегося неравенства вычтем 6

Каждую часть получившегося неравенства разделим на −1. Не забываем, что при делении всех частей неравенства на отрицательное число, знак неравенства меняется на противоположный:

Решениями неравенства 3 ≤ a ≤ 9 являются все числа, которые больше 3 и меньше 9. Границы 3 и 9 принадлежат множеству решений, поскольку неравенство 3 ≤ a ≤ 9 является нестрогим.

Изобразим множество решений неравенства 3 ≤ a ≤ 9 на координатной прямой и запишем ответ в виде числового промежутка:

Когда решений нет

Существуют неравенства, которые не имеют решений. Таковым, например, является неравенство 6x > 2(3x + 1) . В процессе решения этого неравенства мы придём к тому, что знак неравенства > не оправдает своего местоположения. Давайте посмотрим, как это выглядит.

Раскроем скобки в правой части данного неравенство, получим 6x > 6x + 2 . Перенесем 6x из правой части в левую часть, изменив знак, получим 6x − 6x > 2 . Приводим подобные слагаемые и получаем неравенство 0 > 2 , которое не является верным.

Для наилучшего понимания, перепишем приведение подобных слагаемых в левой части следующим образом:

Получили неравенство 0x > 2 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль не может быть больше, чем число 2. Значит неравенство 0x > 2 не имеет решений.

x > 2 , то не имеет решений и исходное неравенство 6x > 2(3x + 1) .

Пример 2 . Решить неравенство

Умножим обе части неравенства на 3

В получившемся неравенстве перенесем член 12x из правой части в левую часть, изменив знак. Затем приведём подобные слагаемые:

Правая часть получившегося неравенства при любом x будет равна нулю. А ноль не меньше, чем −8. Значит неравенство 0x < −8 не имеет решений.

А если не имеет решений приведённое равносильное неравенство 0x < −8 , то не имеет решений и исходное неравенство .

Ответ : решений нет.

Когда решений бесконечно много

Существуют неравенства, имеющие бесчисленное множество решений. Такие неравенства становятся верными при любом x .

Пример 1 . Решить неравенство 5(3x − 9) < 15x

Раскроем скобки в правой части неравенства:

Перенесём 15x из правой части в левую часть, изменив знак:

Приведем подобные слагаемые в левой части:

Получили неравенство 0x < 45 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль меньше, чем 45. Значит решением неравенства 0x < 45 является любое число.

x < 45 имеет бесчисленное множество решений, то и исходное неравенство 5(3x − 9) < 15x имеет те же решения.

Ответ можно записать в виде числового промежутка:

x ∈ (−∞; +∞)

В этом выражении говорится, что решениями неравенства 5(3x − 9) < 15x являются все числа от минус бесконечности до плюс бесконечности.

Пример 2 . Решить неравенство: 31(2x + 1) − 12x > 50x

Раскроем скобки в левой части неравенства:

Перенесём 50x из правой части в левую часть, изменив знак. А член 31 из левой части перенесём в правую часть, опять же изменив знак:

Приведём подобные слагаемые:

Получили неравенство 0x > −31 . В левой части располагается произведение, которое будет равно нулю при любом x . А ноль больше, чем −31 . Значит решением неравенства 0x < −31 является любое число.

А если приведённое равносильное неравенство 0x > −31 имеет бесчисленное множество решений, то и исходное неравенство 31(2x + 1) − 12x > 50x имеет те же решения.

Запишем ответ в виде числового промежутка:

x ∈ (−∞; +∞)

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Определение 1

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства < , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Определение 2

Неравенства a · x < c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной .

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x < c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 - в первом, и a = 0 - во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Определение 3

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b < 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , - 2 3 · x - 2 < 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x < p (≤ , > , ≥) , p являющееся некоторым числом, при a ≠ 0 , а вида a < p (≤ , > , ≥) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b < 0 (≤ , > , ≥) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Определение 4

Алгоритм решение линейного неравенства a · x + b < 0 (≤ , > , ≥) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x < − b (≤ , > , ≥) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем, когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Пример 1

Решить неравенство вида 3 · x + 12 ≤ 0 .

Решение

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что (3 · x) : 3 ≤ (− 12) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида (− ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или (− ∞ , − 4 ] .

Пример 2

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Решение

Из условия видим, что коэффициент a при z равняется - 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число - 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ: z < 0 или (− ∞ , 0) .

Пример 3

Решить неравенство - 5 · x - 15 22 ≤ 0 .

Решение

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется - 5 , с коэффициентом b , которому соответствует дробь - 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести - 15 22 в другую часть с противоположным знаком, разделить обе части на - 5 , изменить знак неравенства:

5 · x ≤ 15 22 ; - 5 · x: - 5 ≥ 15 22: - 5 x ≥ - 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: - 5 = - 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число - 15 22: 5 = - 15 22 · 1 5 = - 15 · 1 22 · 5 = - 3 22 .

Ответ: x ≥ - 3 22 и [ - 3 22 + ∞) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :

Определение 5

Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Пример 4

Решить неравенство 0 · x + 7 > 0 .

Решение

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ : промежуток (− ∞ , + ∞) .

Пример 5

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

Решение

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.

Пример 6

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

Решение

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ : неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Определение 6

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Пример 6

Решить неравенство − 3 · x + 12 > 0 .

Решение

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .

Ответ : (− ∞ , 4) или x < 4 .

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

Видно, что

Определение 7

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.

Определение 8

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Пример 7

Решить неравенство - 5 · x - 3 > 0 при помощи графика.

Решение

Необходимо построить график линейной функции - 5 · x - 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х - 5 · x - 3 > 0 получим значение - 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч - ∞ , - 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки - 3 5 также являлось бы решением неравенства. И совпадало бы с О х.

Ответ : - ∞ , - 3 5 или x < - 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Пример 8

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Решение

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ : второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x - 3 5 - 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Определение 9

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Пример 9

Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .

Решение

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ : нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

1. Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение

.

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

. .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

, это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х=

. Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение

.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то

.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

во второе уравнение системы, получим ,

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

2х-2у-2z=-12

3х-3у-3z=-18

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

х+у+z=6

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.

На этом уроке мы начнём изучать неравенства и их свойства. Мы рассмотрим простейшие неравенства - линейные и методы решения систем и совокупностей неравенств.

Мы часто сравниваем те или иные объекты по их числовым характеристикам: товары по их ценам, людей по их росту или возрасту, смартфоны по их диагонали или результаты команд по количеству забитых мячей в матче.

Соотношения вида или называют неравенствами . Ведь в них записано, что числа не равны, а больше или меньше друг друга.

Чтобы сравнивать натуральные числа в десятичной записи, мы упорядочили цифры: , а дальше чаще всего использовали преимущества десятичной записи: начинали сравнивать цифры чисел с крайних левых разрядов до первого несоответствия.

Но этот способ не всегда удобен.

Проще всего сравнивать положительные числа, т.к. они обозначают количества. Действительно, если число можно эквивалентно представить в виде суммы числа с каким-то другим числом , то больше : .

Эквивалентная запись: .

Это определение можно расширить не только на положительные числа, но и на любые два числа: .

Число больше числа (записывается как или ), если число является положительным. Соответственно, если число отрицательно, то .

Например, сравним две дроби: и . Сразу так и не скажешь, какая из них больше. Поэтому обратимся к определению и рассмотрим разность :

Получили отрицательное число, значит, .

На числовой оси большее число всегда будет располагаться правее, меньшее - левее (Рис. 1).

Рис. 1. На числовой оси большее число располагается правее, меньшее - левее

Зачем нужны такие формальные определения? Одно дело - наше понимание, а другое - техника. Если сформулировать строгий алгоритм сравнения чисел, то его можно поручить компьютеру. В этом есть плюс - такой подход избавляет нас от выполнения рутинных операций. Но есть и минус - компьютер точно следует заданному алгоритму. Если компьютеру поставлена задача: поезд должен отправиться со станции в , то, даже если вы окажетесь на платформе в , на этот поезд вы уже не успеете. Поэтому алгоритмы, которые мы задаём компьютеру для выполнения различных вычислений или решения задач, должны быть очень точными и максимально формализованными.

Как и в случае равенств, с неравенствами можно совершать некоторые действия и получать эквивалентные неравенства.

Рассмотрим некоторые из них.

1. Если , то для любого числа . Т.е. можно прибавлять или вычитать одно и то же число к обеим частям неравенства.

У нас уже есть хороший образ - весы. Если одна из чашек весов перевешивала, то, сколько бы мы ни добавляли (или не забирали) к обеим чашам, эта ситуация не изменится (Рис. 2).

Рис. 2. Если чаши весов не уравновешены, то после добавления (убавления) к ним одинакового количества гирь они останутся в таком же неуравновешенном положении

Это действие можно сформулировать по-другому: можно переносить слагаемые из одной части неравенства в другую, изменяя их знак на противоположный: .

2. Если , то и для любого положительного . Т.е. обе части неравенства можно умножать или делить на положительное число и его знак не изменится.

Для понимания этого свойства можно опять воспользоваться аналогией с весами: если, к примеру, левая чаша перевешивала, то, если возьмём две левые чаши и две правые, перевес точно сохранится. Та же ситуация для , чаш и т.д. Даже если возьмём половины каждой из чаш, ситуация тоже не изменится (Рис. 3).

Рис. 3. Если чаши весов не уравновешены, то, после того как забрать половину каждой из них, они останутся в таком же неуравновешенном положении

Если же умножить или разделить обе части неравенства на отрицательное число, то знак неравенства изменится на противоположный. С аналогией для этой операции чуть сложнее - отрицательных количеств нет. Здесь поможет тот факт, что у отрицательных чисел всё наоборот (чем больше модуль числа, тем меньше само число): .

Для чисел разных знаков ещё легче: . Т.е., умножая на , мы должны изменить знак неравенства на противоположный.

Что касается умножения на отрицательное число , то можно выполнить эквивалентную операцию из двух частей: сначала умножить на противоположное положительное число - как мы уже знаем, знак неравенства не изменится: .

Подробнее о сложении и умножении

В первом свойстве мы записали: , но при этом сказали, что можно не только прибавлять, но и вычитать. Почему? Потому что вычитание числа - это то же самое, что и прибавление противоположного числа: . Именно поэтому мы говорим не только о сложении, но и о вычитании.

Аналогично и со вторым свойством: деление - это умножение на обратное число: . Поэтому во втором свойстве мы говорим не только об умножении на число, но и о делении.

3. Для положительных чисел и , если , то .

Это свойство мы хорошо знаем: если мы торт делим на человек, то, чем больше , тем меньше достанется каждому. Например: , поэтому (действительно, четвёртая часть торта явно меньше третьей части того же торта) (Рис. 4).

Рис. 4. Четвёртая часть торта меньше третьей части того же торта

4. Если и , то .

Продолжая аналогию с весами: если на одних весах левая чаша перевешивает правую и на других - такая же ситуация, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, снова получим, что левая чаша перевешивает (Рис. 5).

Рис. 5. Если левые чаши двух весов перевешивают правые, то, ссыпав отдельно содержимое левых и отдельно содержимое правых чаш, получится, что левая чаша перевешивает

5. Для положительных , если и , то .

Здесь аналогия чуть более сложная, но тоже ясная: если левая чаша тяжелее правой и мы возьмём больше левых чаш, чем правых, то точно получим более массивную чашу (Рис. 6).

Рис. 6. Если левая чаша тяжелее правой, то если взять больше левых чаш, чем правых, то получится более массивная чаша

Последние два свойства интуитивно понятны: сложив или умножив числа побольше, мы в результате получим большее число.

Большинство из этих свойств можно строго доказать, используя различные алгебраические аксиомы и определения, но мы не будем этого делать. Для нас процесс доказательства представляет не такой интерес, как непосредственно полученный результат, который мы будем использовать на практике.

До сих пор мы говорили о неравенствах как о способе записи результата сравнения двух чисел: или . Но неравенства можно использовать и для записи различной информации об ограничениях для того или иного объекта. В жизни мы часто используем такие ограничения для описания, например: Россия - это миллионы людей от Калининграда до Владивостока; в лифте можно перевозить не больше кг, а в пакет - класть не больше кг. Ограничения могут быть использованы и для классификации объектов. Например, в зависимости от возраста выделяют различные категории населения - дети, подростки, молодёжь и т.д.

Во всех рассмотренных примерах можно выделить общую идею: некоторая величина ограничена сверху или снизу (или с обеих сторон сразу). Если - грузоподъёмность лифта, а - допустимая масса товаров, которые можно класть в пакет, то описанную выше информацию можно записать так: , и т.д.

В рассмотренных примерах мы были немного неточны. Формулировка «не больше» подразумевает, что в лифте можно перевозить ровно кг, а в пакет можно положить ровно кг. Поэтому правильнее было записать так: или . Естественно, так писать неудобно, поэтому придумали специальный знак: , который читается как «меньше или равно». Такие неравенства называются нестрогими (соответственно, неравенства со знаками - строгими ). Их используют тогда, когда переменная может быть не только строго больше или меньше, но может и равняться граничному значению.

Решением неравенства называются все такие значения переменной, при подстановке которых полученное числовое неравенство будет верным. Рассмотрим, например, неравенство: . Числа - решения этого неравенства, т.к. неравенства являются верными. А вот числа и не являются решениями, поскольку числовые неравенства и не являются верными. Решить неравенство , значит, найти все значения переменных, при которых неравенство будет верным.

Вернемся к неравенству . Его решения можно эквивалентно описать так: все действительные числа, которые больше . Понятно, что таких чисел бесконечное множество, как же в таком случае записать ответ? Обратимся к числовой оси: все числа, большие , расположены справа от . Заштрихуем эту область, тем самым показывая, что это и будет ответ к нашему неравенству. Чтобы показать, что число не является решением, его заключают в пустой круг, или, по-другому, выкалывают точку (Рис. 7).

Рис. 7. На числовой оси показано, что число не является решением (выколотая точка)

Если же неравенство нестрогое и выбранная точка является решением, то её заключают в закрашенный круг.

Рис. 8. На числовой оси показано, что число является решением (закрашенная точка)

Итоговый ответ удобно записывать с помощью промежутков . Промежуток записывается по следующим правилам:

Знак обозначает бесконечность, т.е. показывает, что число может принимать сколь угодно большое () или сколь угодно малое значение ().

Ответ к неравенству мы можем записать так: или просто: . Это означает, что неизвестная принадлежит указанному промежутку, т.е. может принимать любые значения из этого промежутка.

Если обе скобки промежутка круглые, как в нашем примере, то такой промежуток ещё называют интервалом .

Обычно решением неравенства является промежуток, но возможны и другие варианты, например, решением может быть множество, состоящее из одного или несколько чисел. Например, неравенство имеет только одно решение . Ведь при любых других значениях выражение будет положительным, а значит, соответствующее числовое неравенство выполняться не будет.

Неравенство может и не иметь решений. В этом случае ответ записывают как («Переменная принадлежит пустому множеству»). В том, что решением неравенства может быть пустое множество, нет ничего необычного. Ведь в реальной жизни ограничения также могут привести к тому, что не найдется ни одного элемента, удовлетворяющего требованиям. Например, людей с ростом выше метров и при этом весом до кг - точно нет. Множество таких людей не содержит ни одного элемента, или, как говорят, это пустое множество.

Неравенства могут использоваться не только для записи известной информации, но и, как математические модели, для решения различных задач. Пусть у вас есть рублей. Сколько мороженых по рублей вы можете купить на эти деньги?

Другой пример. У нас есть рублей и нам нужно купить мороженое на друзей. По какой цене мы можем выбрать мороженое для покупки?

В жизни каждый из нас умеет решать такие простые задачи в уме, но задача математики - разработать удобный инструмент, с помощью которого можно решить не одну конкретную задачу, а целый класс разных задач независимо от того, о чём идёт речь - количество порций мороженого, машин для перевозки грузов или рулонов обоев для комнаты.

Перепишем условие первой задачи про мороженое на математическом языке: одна порция стоит рублей, количество порций, которое мы можем купить, нам неизвестно, обозначим как . Тогда общая стоимость нашей покупки: рублей. И, по условию, эта сумма не должна превышать рублей. Избавляясь от наименований, получаем математическую модель: .

Аналогично для второй задачи (где - стоимость порции мороженого): . Конструкции , - простейшие примеры неравенств с переменной, или линейных неравенств.

Линейными называются неравенства вида , а также те, которые можно привести к такому виду эквивалентными преобразованиями. Например: ; ; .

Ничего нового в таком определении для нас нет: отличие линейных неравенств от линейных уравнений только в замене знака равенства на знак неравенства. Название также связано с линейной функцией , которая фигурирует в левой части неравенства (Рис. 9).

Рис. 9. График линейной функции

Соответственно, алгоритм решения линейных неравенств почти такой же, как и алгоритм решения линейных уравнений:

Разберём несколько примеров.

Пример 1. Решить линейное неравенство: .

Решение

Перенесём слагаемое с неизвестной из правой части неравенства в левую: .

Делим обе части на отрицательное число , знак неравенства меняется на противоположный: . Сделаем рисунок на оси (Рис. 10).

Рис. 10. Иллюстрация к примеру 1

Левого края у промежутка нет, поэтому пишем . Левый край промежутка , неравенство строгое, поэтому запишем с круглой скобкой. Получаем интервал: .

Пример 2. Решить линейное неравенство:

Решение

Раскроем скобки в левой и правой частях неравенства: .

Приведём подобные слагаемые: .

Сделаем рисунок на оси (Рис. 11).

Рис. 11. Иллюстрация к примеру 2

Получаем промежуток: .

Что делать, если после приведения подобных слагаемых пропала неизвестная

Пример 1. Решить линейное неравенство: .

Решение

Раскроем скобки: .

Перенесём в левую часть все слагаемые с переменной, а в правую - без переменной:

Приведём подобные слагаемые: .

Получаем: .

Неизвестной нет, что же делать? На самом деле снова ничего нового. Вспомните, что мы делали в таких случаях для линейных уравнений: если получилось верное равенство, то решение - любое действительное число, если получилось неверное равенство, то решений у уравнения - нет.

Так же поступаем и здесь. Если получившееся числовое неравенство верно, значит, неизвестная может принимать любые значения: ( - множество всех действительных чисел). Но числовой оси это можно изобразить следующим образом (Рис. 1):

Рис. 1. Неизвестная может принимать любые значения

А с помощью интервала записать так: .

Если же числовое неравенство получилось неверным, то исходное неравенство не имеет решений: .

В нашем случае неравенство неверно, поэтому ответ: .

В различных задачах нам может встретиться не одно, а сразу несколько условий или ограничений. Например, чтобы решить транспортную задачу, нужно учесть количество машин, время в пути, грузоподъёмность и прочее. Каждое из условий на математическом языке будет описываться своим неравенством. При этом возможны два варианта:

1. Все условия выполняются одновременно. Такой случай описывается системой неравенств . При записи они объединяются фигурной скобкой (можно прочитать её как союз И): .

2. Должно выполняться хотя бы одно из условий. Это описывается совокупностью неравенств (можно прочитать её как союз ИЛИ): .

Системы и совокупности неравенств могут содержать несколько переменных, их количество и сложность могут быть любыми. Но мы будем подробно изучать самый простой случай: системы и совокупности неравенств с одной переменной.

Как их решать? Нужно по отдельности решить каждое из неравенств, а дальше всё зависит от того, система перед нами или совокупность. Если это система , должны выполняться все условия. Если Шерлок Холмс определил, что преступник был блондином и имел размер ноги, то среди подозреваемых должны остаться только блондины с размером ноги. Т.е. нам подойдут только те значения, которые соответствуют и одному, и второму, и, если есть, третьему, и другим условиям. Они находятся на пересечении всех полученных множеств. Если использовать числовую ось, то - на пересечении всех заштрихованных частей оси (Рис. 12).

Рис. 12. Решение системы - пересечение всех заштрихованных частей оси

Если это совокупность , то нам подойдут все значения, которые являются решениями хотя бы одного неравенства. Если Шерлок Холмс определил, что преступником мог быть или блондин, или человек с размером ноги, то среди подозреваемых должны оказаться как все блондины (независимо от размера обуви), так и все люди с размером ноги (независимо от цвета волос). Т.е. решением совокупности неравенств будет объединение множеств их решений. Если использовать числовую ось, то - объединение всех заштрихованных частей оси (Рис. 13).

Рис. 13. Решение совокупности - объединение всех заштрихованных частей оси

Подробнее о пересечении и объединении вы можете узнать ниже.

Пересечение и объединение множеств

Термины «пересечение» и «объединение» относятся к понятию множества. Множество - набор элементов, отвечающим некоторым критериям. Примеров множеств вы можете придумать сколько угодно: множество одноклассников, множество футболистов сборной России, множество машин в соседнем дворе и т.д.

Вы уже знакомы с числовыми множествами: множеством натуральных чисел , целых , рациональных , действительных чисел . Есть и пустые множества , они не содержат элементов. Решения неравенств - это тоже множества чисел.

Пересечением двух множеств и называется такое множество , которое содержит все элементы, принадлежащие одновременно и множеству , и множеству (Рис. 1).

Рис. 1. Пересечение множеств и

Например, пересечение множества всех женщин и множества президентов всех стран будут все женщины-президенты.

Объединением двух множеств и называется такое множество , которое содержит все элементы, которые принадлежат хотя бы одному из множеств или (Рис. 2).

Рис. 2. Объединение множеств и

Например, объединением множества футболистов «Зенита» в сборной России и футболистов «Спартака» в сборной России будут все футболисты «Зенита» и «Спартака», которые играют за сборную. Кстати, пересечение этих множеств будет пустым множеством (игрок не может одновременно играть за два клуба).

С объединением и пересечением числовых множеств вы уже сталкивались, когда искали НОК и НОД двух чисел. Если и - это множества, состоящие из простых множителей, полученных при разложении чисел, то НОД получается из пересечения этих множеств, а НОК - из объединения. Пример:

Пример 3. Решить систему неравенств: .

Решение

Решим по отдельности неравенства. В первом неравенстве перенесём слагаемое без переменной в правую часть с противоположным знаком: .

Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Во втором неравенстве перенесём в левую часть слагаемое с переменной, а в правую - без переменной: . Приведём подобные слагаемые: .

Разделим обе части неравенства на положительное число , знак неравенства не меняется:

Изобразим решения отдельных неравенств на числовой оси. По условию, у нас система неравенств, поэтому ищем пересечение решений (Рис. 14).

Рис. 14. Иллюстрация к примеру 3

По сути первая часть решения систем и совокупностей неравенств с одной переменной сводится к решению отдельных линейных неравенств. В этом вы можете попрактиковаться самостоятельно (например, с помощью наших тестов и тренажёров), а мы подробнее остановимся на нахождении объединений и пересечений множеств решений.

Пример 4. Пусть было получено следующее решение отдельных уравнений системы:

Решение

Заштрихуем на оси область, соответствующую решению первого уравнения (Рис. 15); решение второго уравнения - пустое множество, ему на оси ничего не соответствует.

Рис. 15. Иллюстрация к примеру 4

Это система, поэтому нужно искать пересечение решений. Но их нет. Значит, ответом к системе будем также пустое множество: .

Пример 5. Еще пример: .

Решение

Отличие в том, что это уже совокупность неравенств. Поэтому нужно выбрать область на оси, которая соответствует решению хотя бы одного из уравнений. Получим ответ: .

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.