Устное решение квадратных уравнений и теорема виета. О применении теоремы виета при решении квадратных уравнений Теорема виета формула для квадратного уравнения 8


Между корнями и коэффициентами квадратного уравнения , помимо формул корней, существуют другие полезные соотношения, которые задаются теоремой Виета . В этой статье мы дадим формулировку и доказательство теоремы Виета для квадратного уравнения. Дальше рассмотрим теорему, обратную теореме Виета. После этого разберем решения наиболее характерных примеров. Наконец, запишем формулы Виета, задающие связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Навигация по странице.

Теорема Виета, формулировка, доказательство

Из формул корней квадратного уравнения a·x 2 +b·x+c=0 вида , где D=b 2 −4·a·c , вытекают соотношения x 1 +x 2 =−b/a , x 1 ·x 2 =c/a . Эти результаты утверждаются теоремой Виета :

Теорема.

Если x 1 и x 2 – корни квадратного уравнения a·x 2 +b·x+c=0 , то сумма корней равна отношению коэффициентов b и a , взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a , то есть, .

Доказательство.

Доказательство теоремы Виета проведем по следующей схеме: составим сумму и произведение корней квадратного уравнения, используя известные формулы корней, после этого преобразуем полученные выражения, и убедимся, что они равны −b/a и c/a соответственно.

Начнем с суммы корней, составляем ее . Теперь приводим дроби к общему знаменателю, имеем . В числителе полученной дроби , после чего : . Наконец, после на 2 , получаем . Этим доказано первое соотношение теоремы Виета для суммы корней квадратного уравнения. Переходим ко второму.

Составляем произведение корней квадратного уравнения: . Согласно правилу умножения дробей, последнее произведение можно записать как . Теперь выполняем умножение скобки на скобку в числителе, но быстрее свернуть это произведение по формуле разности квадратов , так . Дальше, вспомнив , выполняем следующий переход . А так как дискриминанту квадратного уравнения отвечает формула D=b 2 −4·a·c , то в последнюю дробь вместо D можно подставить b 2 −4·a·c , получаем . После раскрытия скобок и приведения подобных слагаемых приходим к дроби , а ее сокращение на 4·a дает . Этим доказано второе соотношение теоремы Виета для произведения корней.

Если опустить пояснения, то доказательство теоремы Виета примет лаконичный вид:
,
.

Остается лишь заметить, что при равном нулю дискриминанте квадратное уравнение имеет один корень. Однако, если считать, что уравнение в этом случае имеет два одинаковых корня, то равенства из теоремы Виета также имеют место. Действительно, при D=0 корень квадратного уравнения равен , тогда и , а так как D=0 , то есть, b 2 −4·a·c=0 , откуда b 2 =4·a·c , то .

На практике наиболее часто теорема Виета используется применительно к приведенному квадратному уравнению (со старшим коэффициентом a , равным 1 ) вида x 2 +p·x+q=0 . Иногда ее и формулируют для квадратных уравнений именно такого вида, что не ограничивает общности, так как любое квадратное уравнение можно заменить равносильным уравнением , выполнив деление его обеих частей на отличное от нуля число a . Приведем соответствующую формулировку теоремы Виета:

Теорема.

Сумма корней приведенного квадратного уравнения x 2 +p·x+q=0 равна коэффициенту при x , взятому с противоположным знаком, а произведение корней – свободному члену, то есть, x 1 +x 2 =−p , x 1 ·x 2 =q .

Теорема, обратная теореме Виета

Вторая формулировка теоремы Виета, приведенная в предыдущем пункте, указывает, что если x 1 и x 2 корни приведенного квадратного уравнения x 2 +p·x+q=0 , то справедливы соотношения x 1 +x 2 =−p , x 1 ·x 2 =q . С другой стороны, из записанных соотношений x 1 +x 2 =−p , x 1 ·x 2 =q следует, что x 1 и x 2 являются корнями квадратного уравнения x 2 +p·x+q=0 . Иными словами, справедливо утверждение, обратное теореме Виета. Сформулируем его в виде теоремы, и докажем ее.

Теорема.

Если числа x 1 и x 2 таковы, что x 1 +x 2 =−p и x 1 ·x 2 =q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 +p·x+q=0 .

Доказательство.

После замены в уравнении x 2 +p·x+q=0 коэффициентов p и q их выражения через x 1 и x 2 , оно преобразуется в равносильное уравнение .

Подставим в полученное уравнение вместо x число x 1 , имеем равенство x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 =0 , которое при любых x 1 и x 2 представляет собой верное числовое равенство 0=0 , так как x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 = x 1 2 −x 1 2 −x 2 ·x 1 +x 1 ·x 2 =0 . Следовательно, x 1 – корень уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, x 1 – корень и равносильного ему уравнения x 2 +p·x+q=0 .

Если же в уравнение x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 подставить вместо x число x 2 , то получим равенство x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 =0 . Это верное равенство, так как x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 = x 2 2 −x 1 ·x 2 −x 2 2 +x 1 ·x 2 =0 . Следовательно, x 2 тоже является корнем уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, и уравнения x 2 +p·x+q=0 .

На этом завершено доказательство теоремы, обратной теореме Виета.

Примеры использования теоремы Виета

Пришло время поговорить о практическом применении теоремы Виета и обратной ей теоремы. В этом пункте мы разберем решения нескольких наиболее характерных примеров.

Начнем с применения теоремы, обратной теореме Виета. Ее удобно применять для проверки, являются ли данные два числа корнями заданного квадратного уравнения. При этом вычисляется их сумма и разность, после чего проверяется справедливость соотношений . Если выполняются оба этих соотношения, то в силу теоремы, обратной теореме Виета, делается вывод, что данные числа являются корнями уравнения. Если же хотя бы одно из соотношений не выполняется, то данные числа не являются корнями квадратного уравнения. Такой подход можно использовать при решении квадратных уравнений для проверки найденных корней.

Пример.

Какая из пар чисел 1) x 1 =−5 , x 2 =3 , или 2) , или 3) является парой корней квадратного уравнения 4·x 2 −16·x+9=0 ?

Решение.

Коэффициентами заданного квадратного уравнения 4·x 2 −16·x+9=0 являются a=4 , b=−16 , c=9 . Согласно теореме Виета сумма корней квадратного уравнения должна быть равна −b/a , то есть, 16/4=4 , а произведение корней должно быть равно c/a , то есть, 9/4 .

Теперь вычислим сумму и произведение чисел в каждой из трех заданных пар, и сравним их с только что полученными значениями.

В первом случае имеем x 1 +x 2 =−5+3=−2 . Полученное значение отлично от 4 , поэтому дальнейшую проверку можно не осуществлять, а по теореме, обратной теореме Виета, сразу сделать вывод, что первая пара чисел не является парой корней заданного квадратного уравнения.

Переходим ко второму случаю. Здесь , то есть, первое условие выполнено. Проверяем второе условие: , полученное значение отлично от 9/4 . Следовательно, и вторая пара чисел не является парой корней квадратного уравнения.

Остался последний случай. Здесь и . Оба условия выполнены, поэтому эти числа x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ:

Теорему, обратную теореме Виета, на практике можно использовать для подбора корней квадратного уравнения. Обычно подбирают целые корни приведенных квадратных уравнений с целыми коэффициентами, так как в других случаях это сделать достаточно сложно. При этом пользуются тем фактом, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения. Разберемся с этим на примере.

Возьмем квадратное уравнение x 2 −5·x+6=0 . Чтобы числа x 1 и x 2 были корнями этого уравнения, должны выполняться два равенства x 1 +x 2 =5 и x 1 ·x 2 =6 . Остается подобрать такие числа. В данном случае это сделать достаточно просто: такими числами являются 2 и 3 , так как 2+3=5 и 2·3=6 . Таким образом, 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, особенно удобно применять для нахождения второго корня приведенного квадратного уравнения, когда уже известен или очевиден один из корней. В этом случае второй корень находится из любого из соотношений .

Для примера возьмем квадратное уравнение 512·x 2 −509·x−3=0 . Здесь легко заметить, что единица является корнем уравнения, так как сумма коэффициентов этого квадратного уравнения равна нулю. Итак, x 1 =1 . Второй корень x 2 можно найти, например, из соотношения x 1 ·x 2 =c/a . Имеем 1·x 2 =−3/512 , откуда x 2 =−3/512 . Так мы определили оба корня квадратного уравнения: 1 и −3/512 .

Понятно, что подбор корней целесообразен лишь в самых простых случаях. В остальных случаях для поиска корней можно применить формулы корней квадратного уравнения через дискриминант.

Еще одно практическое применение теоремы, обратной теореме Виета, состоит в составлении квадратных уравнений по заданным корням x 1 и x 2 . Для этого достаточно вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример.

Напишите квадратное уравнение, корнями которого являются числа −11 и 23 .

Решение.

Обозначим x 1 =−11 и x 2 =23 . Вычисляем сумму и произведение данных чисел: x 1 +x 2 =12 и x 1 ·x 2 =−253 . Следовательно, указанные числа являются корнями приведенного квадратного уравнения со вторым коэффициентом −12 и свободным членом −253 . То есть, x 2 −12·x−253=0 – искомое уравнение.

Ответ:

x 2 −12·x−253=0 .

Теорема Виета очень часто используется при решении заданий, связанных со знаками корней квадратных уравнений. Как же связана теорема Виета со знаками корней приведенного квадратного уравнения x 2 +p·x+q=0 ? Приведем два соответствующих утверждения:

  • Если свободный член q – положительное число и если квадратное уравнение имеет действительные корни, то либо они оба положительные, либо оба отрицательные.
  • Если же свободный член q – отрицательное число и если квадратное уравнение имеет действительные корни, то их знаки различны, другими словами, один корень положительный, а другой - отрицательный.

Эти утверждения вытекают из формулы x 1 ·x 2 =q , а также правил умножения положительных, отрицательных чисел и чисел с разными знаками. Рассмотрим примеры их применения.

Пример.

R он положителен. По формуле дискриминанта находим D=(r+2) 2 −4·1·(r−1)= r 2 +4·r+4−4·r+4=r 2 +8 , значение выражения r 2 +8 положительно при любых действительных r , таким образом, D>0 при любых действительных r . Следовательно, исходное квадратное уравнение имеет два корня при любых действительных значениях параметра r .

Теперь выясним, когда корни имеют разные знаки. Если знаки корней различны, то их произведение отрицательно, а по теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Следовательно, нас интересуют те значения r , при которых свободный член r−1 отрицателен. Таким образом, чтобы найти интересующие нас значения r , надо решить линейное неравенство r−1<0 , откуда находим r<1 .

Ответ:

при r<1 .

Формулы Виета

Выше мы говорили о теореме Виета для квадратного уравнения и разбирали утверждаемые ей соотношения. Но существуют формулы, связывающие действительные корни и коэффициенты не только квадратных уравнений, но и кубических уравнений, уравнений четверной степени, и вообще, алгебраических уравнений степени n . Их называют формулами Виета .

Запишем формулы Виета для алгебраического уравнения степени n вида , при этом будем считать, что оно имеет n действительных корней x 1 , x 2 , …, x n (среди них могут быть совпадающие):

Получить формулы Виета позволяет теорема о разложении многочлена на линейные множители , а также определение равных многочленов через равенство всех их соответствующих коэффициентов. Так многочлен и его разложение на линейные множители вида равны. Раскрыв скобки в последнем произведении и приравняв соответствующие коэффициенты, получим формулы Виета.

В частности при n=2 имеем уже знакомые нам формулы Виета для квадратного уравнения .

Для кубического уравнения формулы Виета имеют вид

Остается лишь заметить, что в левой части формул Виета находятся так называемые элементарные симметрические многочлены .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

При изучении способов решения уравнений второго порядка в школьном курсе алгебры, рассматривают свойства полученных корней. Они в настоящее время известны под названием теоремы Виета. Примеры использования ее приводятся в данной статье.

Квадратное уравнение

Уравнение второго порядка представляет собой равенство, которое показано на фото ниже.

Здесь символы a, b, c являются некоторыми числами, носящими название коэффициентов рассматриваемого уравнения. Чтобы решить равенство, необходимо найти такие значения x, которые делают его истинным.

Заметим, что поскольку максимальное значение степени, в которую возводится икс, равно двум, тогда число корней в общем случае также равно двум.

Для решения этого типа равенств существует несколько способов. В данной статье рассмотрим один из них, который предполагает использование так называемой теоремы Виета.

Формулировка теоремы Виета

В конце XVI известный математик Франсуа Виет (француз) заметил, анализируя свойства корней различных квадратных уравнений, что определенные их комбинации удовлетворяют конкретным соотношениям. В частности, этими комбинациями является их произведение и сумма.

Теорема Виета устанавливает следующее: корни квадратного уравнения при их сумме дают отношение коэффициентов линейного к квадратичному взятое с обратным знаком, а при их произведении приводят к отношению свободного члена к квадратичному коэффициенту.

Если общий вид уравнения записан так, как это представлено на фото в предыдущем разделе статьи, тогда математически эту теорему можно записать в виде двух равенств:

  • r 2 + r 1 = -b / a;
  • r 1 х r 2 = c / a.

Где r 1 , r 2 - это значение корней рассматриваемого уравнения.

Приведенные два равенства можно использовать для решения ряда самых разных математических задач. Использование теоремы Виета в примерах с решением приведены в следующих разделах статьи.

В восьмом классе, учащиеся знакомятся с квадратными уравнениями и способами их решения. При этом, как показывает опыт, большинство учащихся при решении полных квадратных уравнений применяют только один способ – формулу корней квадратного уравнения. Для учеников, хорошо владеющих навыками устного счета, этот способ явно нерационален. Решать квадратные уравнения учащимся приходится часто и в старших классах, а там тратить время на расчет дискриминанта просто жалко. На мой взгляд, при изучении квадратных уравнений, следует уделить больше времени и внимания применению теоремы Виета (по программе А.Г. Мордковича Алгебра-8, на изучение темы “Теорема Виета. Разложение квадратного трехчлена на линейные множители” запланировано только два часа).

В большинстве учебников алгебры эта теорема формулируется для приведенного квадратного уравнения и гласит, что если уравнение имеет корни и , то для них выполняются равенства , . Затем формулируется утверждение, обратное к теореме Виета, и предлагается ряд примеров для отработки этой темы.

Возьмем конкретные примеры и проследим на них логику решения с помощью теоремы Виета.

Пример 1. Решить уравнение .

Допустим, это уравнение имеет корни, а именно, и . Тогда по теореме Виета одновременно должны выполняться равенства

Обратим внимание, что произведение корней – положительное число. А значит, корни уравнения одного знака. А так как сумма корней также является положительным числом, делаем вывод, что оба корня уравнения – положительные. Вернемся снова к произведению корней. Допустим, что корни уравнения – целые положительные числа. Тогда получить верное первое равенство можно только двумя способами (с точностью до порядка множителей): или . Проверим для предложенных пар чисел выполнимость второго утверждения теоремы Виета: . Таким образом, числа 2 и 3 удовлетворяют обоим равенствам, а значит, и являются корнями заданного уравнения.

Ответ: 2; 3.

Выделим основные этапы рассуждений при решении приведенного квадратного уравнения с помощью теоремы Виета:

записать утверждение теоремы Виета (*)
  • определить знаки корней уравнения (Если произведение и сумма корней – положительные, то оба корня – положительные числа. Если произведение корней – положительное число, а сумма корней – отрицательное, то оба корня – отрицательные числа. Если произведение корней – отрицательное число, то корни имеют разные знаки. При этом, если сумма корней – положительная, то больший по модулю корень является положительным числом, а если сумма корней меньше нуля, то больший по модулю корень – отрицательное число);
  • подобрать пары целых чисел, произведение которых дает верное первое равенство в записи (*);
  • из найденных пар чисел выбрать ту пару, которая при подстановке во второе равенство в записи (*) даст верное равенство;
  • указать в ответе найденные корни уравнения.

Приведем еще примеры.

Пример 2. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – положительное, а сумма – отрицательное число. Значит, оба корня – отрицательные числа. Подбираем пары множителей, дающих произведение 10 (-1 и -10; -2 и -5). Вторая пара чисел в сумме дает -7. Значит, числа -2 и -5 являются корнями данного уравнения.

Ответ: -2; -5.

Пример 3. Решите уравнение .

Решение.

Пусть и - корни заданного уравнения. Тогда по теореме Виета Заметим, что произведение – отрицательное. Значит, корни – разного знака. Сумма корней – также отрицательное число. Значит, больший по модулю корень – отрицательный. Подбираем пары множителей, дающих произведение -10 (1 и -10; 2 и -5). Вторая пара чисел в сумме дает -3. Значит, числа 2 и -5 являются корнями данного уравнения.

Ответ: 2; -5.

Заметим, что теорему Виета в принципе можно сформулировать и для полного квадратного уравнения: если квадратное уравнение имеет корни и , то для них выполняются равенства , . Однако применение этой теоремы довольно проблематично, так как в полном квадратном уравнении по крайней мере один из корней (при их наличии, конечно) является дробным числом. А работать с подбором дробей долго и трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение . Умножим обе части уравнения на первый коэффициент а и запишем уравнение в виде . Введем новую переменную и получим приведенное квадратное уравнение , корни которого и (при их наличии) могут быть найдены по теореме Виета. Тогда корни исходного уравнения будут . Обратим внимание, что составить вспомогательное приведенное уравнение очень просто: второй коэффициент сохраняется, а третий коэффициент равен произведению ас . При определенном навыке учащиеся сразу составляют вспомогательное уравнение, находят его корни по теореме Виета и указывают корни заданного полного уравнения. Приведем примеры.

Пример 4. Решите уравнение .

Составим вспомогательное уравнение и по теореме Виета найдем его корни . А значит, корни исходного уравнения .

Ответ: .

Пример 5. Решите уравнение .

Вспомогательное уравнение имеет вид . По теореме Виета его корни . Находим корни исходного уравнения .

Ответ: .

И еще один случай, когда применение теоремы Виета позволяет устно найти корни полного квадратного уравнения. Нетрудно доказать, что число 1 является корнем уравнения , тогда и только тогда, когда . Второй корень уравнения находится по теореме Виета и равен . Еще одно утверждение: чтобы число –1 являлось корнем уравнения необходимо и достаточно, чтобы . Тогда второй корень уравнения по теореме Виета равен . Аналогичные утверждения можно сформулировать и для приведенного квадратного уравнения.

Пример 6. Решите уравнение .

Заметим, что сумма коэффициентов уравнения равна нулю. Значит, корни уравнения .

Ответ: .

Пример 7. Решите уравнение .

Для коэффициентов этого уравнения выполняется свойство (действительно, 1-(-999)+(-1000)=0). Значит, корни уравнения .

Ответ: ..

Примеры на применение теоремы Виета

Задание 1. Решите приведенное квадратное уравнение с помощью теоремы Виета.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 2. Решите полное квадратное уравнение с помощью перехода к вспомогательному приведенному квадратному уравнению.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Задание 3. Решите квадратное уравнение с помощью свойства .

Теорема Виета (точнее, теорема, обратная теореме Виета) позволяет сократить время на решение квадратных уравнений. Только надо уметь ею пользоваться. Как научиться решать квадратные уравнения по теореме Виета? Это несложно, если немного порассуждать.

Сейчас мы будем говорить только о решении по теореме Виета приведенного квадратного уравнения.Приведенное квадратное уравнение — это уравнение, в котором a, то есть коэффициент перед x², равен единице. Не приведенные квадратные уравнения решить по теореме Виета тоже можно, но там уже, как минимум, один из корней — не целое число. Их угадывать сложнее.

Теорема, обратная теореме Виета, гласит: если числа x1 и x2 таковы, что

то x1 и x2 — корни квадратного уравнения

При решении квадратного уравнения по теореме Виета возможны всего 4 варианта. Если запомнить ход рассуждений, находить целые корни можно научиться очень быстро.

I. Если q — положительное число,

это означает, что корни x1 и x2 — числа одинакового знака (поскольку только при умножении чисел с одинаковыми знаками получается положительное число).

I.a. Если -p — положительное число, (соответственно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Если -p — отрицательное число, (соответственно, p>0), то оба корня — отрицательные числа (складывали числа одного знака, получили отрицательное число).

II. Если q — отрицательное число,

это значит, что корни x1 и x2 имеют разные знаки (при умножении чисел отрицательное число получается только в случае, когда знаки у множителей разные). В этом случае x1+x2 является уже не суммой, а разностью (ведь при сложении чисел с разными знаками мы вычитаем из большего по модулю меньшее). Поэтому x1+x2 показывает, на сколько одно отличаются корни x1 и x2, то есть, на сколько один корень больше другого (по модулю).

II.a. Если -p — положительное число, (то есть p<0), то больший (по модулю) корень — положительное число.

II.b. Если -p — отрицательное число, (p>0), то больший (по модулю) корень — отрицательное число.

Рассмотрим решение квадратных уравнений по теореме Виета на примерах.

Решить приведенное квадратное уравнение по теореме Виета:

Здесь q=12>0, поэтому корни x1 и x2 — числа одного знака. Их сумма равна -p=7>0, поэтому оба корня — положительные числа. Подбираем целые числа, произведение которых равно 12. Это 1 и 12, 2 и 6, 3 и 4. Сумма равна 7 у пары 3 и 4. Значит, 3 и 4 — корни уравнения.

В данном примере q=16>0, значит, корни x1 и x2 — числа одного знака. Их сумма -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Здесь q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то бОльшее число положительно. Значит, корни 5 и -3.

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.