Признаки химических реакций определение. Классификация химических реакций


1. Химические реакции. Признаки и условия их протекания. Химические уравнения. Закон сохранения массы веществ. Типы химических реакций.

2. Какой объем газа можно получить при взаимодействии 60г, 12% раствора карбоната калия с серной кислотой.

Химическая реакция - превращение одного или нескольких веществ в другое.
Типы химических реакций:

1)Реакция соединения – это реакции в результате которых из двух веществ образуется одно более сложное.

2)Реакция разложения - это реакция в результате которых из одного сложного вещества образуется несколько более простых.

3)Реакция замещения – это реакции между простым и сложным веществами, в результате которых образуется новое простое и новое сложное вещество.

4)Реакция обмена – это реакции между двумя сложными веществами, в результате которых они обмениваются своими составными частями.

Условия протекания реакции:

1)Тесное соприкосновение веществ.
2)Нагревание
3)Измельчённость (быстрее всего идут реакции в растворах)
Любая химическая реакция может быть изображена с помощью химического уравнения.

Химическое уравнение – это условная запись химической реакции с помощью химических формул и коэфицентов.

В основе химических уравнений лежит закон сохранения массы вещества : массы веществ вступивших в реакцию равна массе веществ получившихся в результате реакции.
Признаки химических реакций:

· Изменение окраски

· Выделение газа

· Выпадение осадка

· Выделение тепла и света

· Выделение запаха

2.

Билет №7

1. Основные положения Т.Э.Д. – теория электрической диссоциации.

2. Сколько грамм магния, содержащего 8% примесей, может прореагировать с 40г соляной кислоты.

Вещества, растворимые в воде могут диссоциировать, т.е. распадаться на противоположно заряженные ионы.
Электрическая диссоциация
распад электролита на ионы при растворении или расплавлении.
Электролиты вещества, растворы или расплавы которых проводят электрический ток (кислоты, соли, щелочи).
Они образованы ионной связью (соли, щелочи), или ковалентной,сильнополярной (кислоты).
Не электролиты
вещества, растворы которых не проводят электрический ток (раствор сахара, спирта, глюкозы)
При диссоциации электролиты распадаются на катионы(+) ианионы(-)
Ионы –
заряженные частица, в которые превращаются атомы, в результате отдатия и взятия ē
Химические свойства растворов электролитов определяются свойствами тех ионов, которые образуются при диссоциации.


Кислота – электролит, который диссоциирует на катионы водорода и анион кислотного остатка.

Серная кислота диссоциирует на 2 катиона Н с зарядом (+) и
анион SO 4 с зарядои (-)
Основания – электролит, который диссоциирует на катионы металла и гидроксид анионы.

Соли – электролит, который в водном растворе диссоциирует на катионы металла и анионы кислотного остатка.

2.

1. Реакции ионного обмена.


В промышленности подбирают такие условия, чтобы осуществлялись нужные реакции, а вредные замедлялись.

ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ

В таблице 12 приведены основные типы химических реакций по числу участву­ющих в них частиц. Даны рисунки и уравнения часто описываемых в учебни­ках реакций разложения , соединения , замещения и обмена .

В верхней части таблицы представлены реакции разложения воды и гидрокарбоната натрия. Изображён прибор для прохождения через воду постоянного электрическо­го тока. Катод и анод представляют собой металлические пластинки, погружён­ные в воду и соединённые с источником электрического тока. В связи с тем, что чистая вода практически не проводит электрический ток, к ней добавляют небольшое количест­во соды (Nа 2 СО 3) или серной кислоты (Н 2 SО 4). При прохождении тока на обоих электродах происходит выделение пузырьков газа. В трубке, где собирается водород, объём оказывается вдвое большим, чем в трубке, где соби­рается кислород (о его наличии можно удостовериться с помощью тлеющей лучинки). Модельная схема демонстрирует реакцию разложения воды. Химические (ковалентные) связи между атомами в молекулах воды разрушаются, и из освобождающихся атомов обра­зуются молекулы водорода и кислорода.

Модельная схема реакции соединения металлического железа и молекулярной серы S 8 показывает, что в резуль­тате перегруппировки атомов в процессе реакции образуется сульфид железа. При этом разрушаются химические связи в кристалле железа (металлическая связь) и молекуле серы (ковалентная связь), а осво­бодившиеся атомы соединяются с образованием ионных связей в кристалл соли.

К другой реакции соединения относится гашение извести СаО водой с образованием гидроксида кальция. При этом жжёная (негашёная) известь начинает разогреваться и образуется рыхлый порошок гашёной извести.

К реакциям замещения относят взаимодействие металла с кислотой или солью. При погружении достаточно активного металла в сильную (но не азотную) кислоту выделяются пузырьки водорода. Более активный металл вытесняет менее активный из раствора его соли.

Типичными реакциями обмена является реакция нейтрализации и реакция между растворами двух солей. На рисунке показано получение осадка сульфата бария. За ходом реакции нейтрализации следят с помощью индикатора фенолфталеина (малиновая окраска исчезает).


Таблица 12

Типы химических реакций


ВОЗДУХ. КИСЛОРОД. ГОРЕНИЕ

Кислород является самым распространённым химическим элементом на Земле. Содержание его в земной коре и гидросфере представлено в таблице 2 "Распространённость химических элементов". На долю кислорода приходится примерно половина (47 %) массы литосферы. Он является преобладающим химическим эле­ментом гидросферы. В земной коре кислород присутствует только в связанном виде (оксиды, соли). Гидросфера также представлена в основном связанным кис­лородом (часть молекулярного кислорода растворена в воде).

В атмосфере свободного кислорода содержится 20,9 % по объёму. Воздух – сложная смесь газов. Сухой воздух на 99,9 % состоит из азота (78,1 %), кислорода (20,9 %) и аргона (0,9 %). Содержание этих газов в воздухе практически постоян­но. В состав сухого атмосферного воздуха также входят диоксид углерода, неон, гелий, метан, криптон, водород, оксид азота(I) (оксид диазота, гемиоксид азота – N 2 О), озон, диоксид серы, монооксид уг­лерода, ксенон, оксид азота(IV) (диоксид азота – NО 2).

Состав воздуха определил французский химик Антуан Лоран Лавуазье в конце XVIII века (таблица 13). Он доказал содержание кислорода в воздухе, и назвал его "жизненный воздух". Для этого он нагревал на печи ртуть в стеклянной реторте, тонкая часть которой поводилась под стеклянный колпак, опущенный в водяную баню. Воздух под колпаком оказывался замкнутым. При нагревании ртуть соединялась с кислородом, превращаясь в оксид ртути красного цвета. "Воздух", остав­шийся в стеклянном колпаке после нагревания ртути, не содержал кислорода. Мышь, помещённая под колпак, задыхалась. Прокалив оксид ртути, Лавуазье снова выделил из него кислород и вновь получил чистую ртуть.

Содержание кислорода в атмосфере стало заметно увеличиваться около 2 млрд. лет назад. В результате реакции фотосинтеза поглощался некоторый объём углекислого газа и выделялся такой же объём кислорода. На рисунке таблицы схема­тически показано образование кислорода при фотосинтезе. В процессе фотосин­теза в листьях зелёных растений, содержащих хлорофилл , при поглощении солнечной энергии происходит превращение воды и углекислого газа в углеводы (сахара) и кислород . Реакцию образова­ния глюкозы и кислорода в зелёных растениях можно записать в следующем виде:

6Н 2 О + 6СО 2 = С 6 Н 12 О 6 + 6О 2 .

Образующаяся глюкоза превращается в нерастворимый в воде крахмал , который накапливается в растениях.


Таблица 13

Воздух. Кислород. Горение


Фотосинтез представляет собой сложный химический процесс, включающий несколько стадий: поглощение и транспортировку солнечной энергии, использо­вание энергии солнечного света для инициирования фотохимических окисли­тельно-восстановительных реакций, восстановление углекислого газа и образованием угле­водов.

Солнечный свет – это электромагнитное излучение разных длин волн. В молекуле хлоро­филла при поглощении видимого света (красного и фиолетового) происходят переходы электронов из одного энергетического состояния в другое. На фотосинтез расходуется только небольшая часть солнечной энергии (0,03 %), достигающей поверхности Земли.

Весь имеющийся на Земле диоксид углерода проходит через цикл фотосинте­за в среднем за 300 лет, кислород – за 2000 лет, вода океанов – за 2 млн. лет. В настоящее время в атмосфере установилось постоянное содержание кислорода. Он практически полностью расходуется на дыхание, горение и гниение органиче­ских веществ.

Кислород – одно из самых активных веществ. Процессы с участием кислоро­да называются реакциями окисления. К ним относят горение, дыхание, гниение и многие другие. На таблице показано горение нефти, которое идёт с выделением теплоты и света.

Реакции горения могут принести не только пользу, но и вред. Горение можно остановить, прекратив доступ воздуха (окислителя) к горящему предмету с помощью пены, песка или одеяла.

Пенные огнетушители наполняют концентрированным раствором питьевой соды. При её контакте с концентрированной серной кислотой, находящейся в стеклянной ампуле в верхней части огнетушителя, образуется пена углекислого газа. Для приведения в действие огнетушитель переворачивают и ударяют об пол металлическим штиф­том. При этом ампула с серной кислотой разбивается и образующийся в результате реакции кислоты с гидрокарбонатом натрия углекислый газ вспенивает жидкость и выбрасывает её из огнетушителя сильной струёй. Пенис­тая жидкость и углекислый газ, обволакивая горящий предмет, оттесняют воздух и гасят пламя.


Похожая информация.


На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?

При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.

Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.

Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.

При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.

Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?

Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.

С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.

В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.

Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.

На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.

В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

«Химические реакции. Признаки и условия их протекания»

Барышова И.В. ГОУ СОШ №1980. г Москва.

Задачи обучения. Сформировать знания о признаках и условиях протекания химических реакций, на этой основе усовершенствовать умение отличать физические процессы от химических.

Задачи развития. Совершенствовать умение объяснять зависимость протекания химических реакций от внешних условий.

Эксперимент. Плавление парафина, обугливание сахара, горение лучины, взаимодействие медного купороса с аммиаком, взаимодействие сульфата меди (II) и гидроксида натрия, взаимодействие растворов карбоната натрия и соляной кислоты, взаимодействие тиосульфата натрия с серной кислотой. Составление моделей молекул.

Планируемые результаты обучения. Учащиеся должны уметь на примерах конкретных химических реакций указывать условия их возникновения и дальнейшего протекания, а также признаки реакций.

Планируемые результаты развития. Учащиеся должны уметь объяснять связь между условиями и возможностью протекания химических реакций.

Ход урока.

Все изменения, происходящие с веществами в природе, называются явлениями . В природе происходят биологические, химические и физические явления. Но сегодня мы будем сравнивать химические и физические явления

В процессе демонстрации опытов (дробление кусочка сахара и обугливание сахара) выясняем сущность происходящих явлений и составляем таблицу.

Приведите свои примеры физических и химических явлений.

Химические явления называются химическими реакциями. Давайте смоделируем на атомно-молекулярном уровне химическую реакцию разложения воды.

Изготовление молекул воды и демонстрация химического явления (работа с моделями).

Для закрепления знаний проводим беседу с учащимися и отвечаем на вопросы.

Закружилась листва золотая
В розоватой воде на пруду.
Словно бабочек лёгкая стая с
Замираньем летит на звезду…

(С. Есенин).

Вопросы учителя:

1. О каком явлении в жизни растений говорится в стихах С. Есенина?
2. К физическим или химическим явлениям относится листопад?
3. С чем связано изменение цвета листьев деревьев осенью, какие явления физические или химические происходят при этом?
4. Какой пигмент обуславливает зелёную окраску листьев растений?

Для развития умений учащихся по самоконтролю знаний проводим тестированный контроль.

1. К химическим явлениям (в отличие от физических) относятся:


  1. Сгорание бензина в двигателе автомобиля

  2. Скисание молока

  3. Таяние снега

  4. Образование инея на деревьях.
2. Какие из природных явлений сопровождаются химическими реакциями?

  1. Выпадение дождя

  2. Извержение вулканов

  3. Гниение растительных остатков

  4. Ледоход на реке.
3. Какие из признаков характерны для химических реакций?

  1. Образование осадка

  2. Изменение агрегатного состояния

  3. Выделение газа

  4. Измельчение вещества.
4. К физическим явлениям относятся:

  1. Горение угля

  2. Приготовление порошка из куска мела

  3. Образование ржавчины

  4. Свечение вольфрамовой нити в лампочке.
Далее, используя знания учащихся о химических реакциях, на основе проделанных демонстрационных опытов (взаимодействие тиосульфата натрия с серной кислотой при разной температуре) составляем таблицу «Условия возникновения и протекания химических реакций»

Для чего нам необходимо знать условия возникновения и условия протекания химических реакций?

Для того чтобы контролировать протекание химических реакций, иногда химическую реакцию необходимо прекратить, например, при пожаре мы стремимся прекратить реакцию горения.

О реакции горения мы будем говорить на следующем урок.

Завершает урок рефлексионо-оценочный этап.

Показ занимательного опыта «Вулкан»

В ходе этого урока научились работать с химической посудой, создавать модели молекул, различать химические и физические явления, знать условия возникновения и протекания реакций, делать выводы.

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.