Женщины ученые в мировой истории. Женщины-ученые с мировым именем

Человечество развивается благодаря науке. Кажется, что открывать новые горизонты - удел мужчин. Во всяком случае среди ученых большинство представляет именно сильный пол. Тем не менее не стоит недооценивать и роль женщин в науке. Например, первым программистом в мире стала Ада Байрон, дочь известного поэта. В ее честь был назван один из первых компьютерных языков.

В любой период истории нетрудно отыскать передовых и талантливых женщин-ученых, которые двигали науку наравне с мужчинами. Часто достижения дам бывают незаслуженно забытыми, хотя человечество вовсю ими и пользуются. Поэтому и настала пора вспомнить о самых знаменитых женщинах-ученых.

Мария Склодовская-Кюри (1867-1934). Жизнь этой женщины оказалась уникальной. Радиоактивность стала частью ее жизни, в прямой и переносном смысле этого слова. Даже сегодня, спустя почти 80 лет после смерти ученого, ее документы настолько «фонят», что смотреть их можно только с использованием защитных средств. Польская эмигрантка в начале XX столетия вместе со своим мужем Пьером работала над получением таких радиоактивных элементов, как радий, полоний и уран. При этом никакой защиты ученые не использовали, не задумываясь даже над тем, какой вред могут эти элементы нанести живому человеку. Многолетняя работа с радием привела к развитию лейкемии. За небрежность Мария Кюри заплатила своей жизнью, а ведь она даже носила на груди ампулу с радиоактивным элементом, как своеобразный талисман. Ученое наследие этой женщины сделало ее бессмертной. Мария получала Нобелевскую премию дважды - в 1903 по физике вместе с мужем и в 1911 по химии уже сама. Открыв радий и полоний, ученая работала в специальном Радиевом институте, изучая там радиоактивность. Работу Марии Кюри продолжила ее дочь, Ирэн. Она сумела также получить Нобелевскую премию по физике.

Розалинд Франклин (1920-1958). Немногие знают, кому принадлежит фактическое открытие ДНК. Между прочим честь эта принадлежит английскому биофизику, скромной англичанке Розалинд Франклин. Долгое время ее заслуги оставались в тени, а на слуху у всех были достижения коллег ученого, Джеймса Уотсона и Фрэнсиса Крика. Но именно точные лабораторные опыты женщины, получение ею рентгеновского изображения ДНК, которое продемонстрировало извилистую структуру, сделали работу столь значимой. Анализ Франклин позволил довести работу до своего логического конца. В 1962 году ученые мужи получили Нобелевскую премию за свое открытие, однако женщина умерла от рака за 4 года до того. Розалинд не дожила до триумфа, посмертно же эту престижную премию не вручают.

Лиз Мейтнер (1878-1968). Уроженка Вены занялась физикой под руководством ведущих европейских светил. В 1926 году Мейтнер сумела стать первой женщиной-профессором в Германии, такого звания ее удостоил Берлинский университет. В 1930-х годах женщина занималась вопросом создания трансурановых элементов, в 1939 году она сумела объяснить расщепление атомного ядра, за 6 лет до атомных бомбардировок Японии. Мейтнер вместе с коллегой, Отто Ганом, проводила исследования, доказав возможность расщепления ядра с выделением большого объема энергии. Однако результаты опытов не удалось развить, так как в Германии сложилась тяжелая политическая обстановка. Мейтнер бежала в Стокгольм, отказавшись сотрудничать с Америкой в деле создания нового оружия. В 1944 году Отто Ган за открытие ядерного распада получил Нобелевскую премию. Видные ученые полагали, что Лиз Мейтнер была достойна того же, однако из-за интриг ее попросту «забыли». В честь знаменитой женщины-ученого был назван 109 элемент таблицы Менделеева.

Рейчел Карсон (1907-1964). В 1962 году вышла в свет книга «Безмолвная весна». Основываясь на правительственных отчетах и научных исследованиях, Карсон описала в своем труде тот вред, который пестициды причиняют здоровью человека и окружающей среде. Эта книга стала тревожным звонком для человечества, породив экологические движения по всему миру. Дипломированный зоолог и морской биолог неожиданно превратилась в красноречивого эколога. А все началось еще в 1940-х, когда Карсон вместе с другими учеными высказала беспокойство по поводу действий правительства в области применения сильных ядов и другой химии на полях в борьбе с вредителями. Название же своей главной книги «Безмолвная весна» исходит от страха Рейчел проснуться однажды и не услышать пения птиц. После публикации книга стала бестселлером, несмотря на угрозы автору со стороны химических компаний. Карсон умерла от рака молочной железы, так и не успев увидеть, насколько важной ее работа оказалась в деле борьбы за сохранение природы нашей планеты.

Барбара Мак-Клинток (1902-1992). Эта женщина посвятила свою жизнь исследованию цитогенетики кукурузы. В своих исследованиях ученый выяснил, что гены могут перемещаться между разными хромосомами, то есть генетический ландшафт не такой стабильный, как считалось ранее. Работы Мак-Клинток, осуществленные ею в 1940-1950-х над прыгающими генами и генетический регуляцией, оказались настолько смелыми и передовыми, что в них никто не поверил. Долгое время научный мир отказывался воспринимать исследования Мак-Клинток всерьез, лишь в 1983 году Барбара получила давно уже заслуженную Нобелевскую премию. Выводы, сделанные ученым, легли в основу современного понимания генетики. Мак-Клинток помогла объяснить, как бактерии становятся устойчивыми к антибиотикам, и что эволюция происходит не шажками, а скачками.

Ада Ловлейс (Байрон) (1815-1852). Компьютерщики всего мира считают эту женщину одним из основателем своего мира. Любовь к точным наукам Ада унаследовала от своей матери. Выйдя в свет, девушка познакомилась с Чарльзом Бэббиджем, который являлся профессором Кембриджа и разработал собственную вычислительную машину. Однако денег на ее создание у ученого так и не хватало. Зато Ада, став женой лорда Ловлейс, с упоением отдалась науке, считая это своим истинными призванием. Она изучила машину Бэббиджа, описав, в частности, алгоритмы вычисления на ней числе Бернулли. По сути это была первая программа, которая могла быть реализована на машине Бэббиджа, огромном калькуляторе. Хотя при жизни Ады машина так и не было собрана, в историю она вошла, как первый программист в истории.

Элизабет Блэквэлл (1821-1910). Сегодня множество девушек оканчивает медицинский институт, хотя поступление туда - непростая задача. А вот в середине XIX века подобные учебные заведения попросту не готовы были принимать в свои ряды женщин. Американка Элизабет Блэквелл спонтанно решила получить медицинское образование, в надежде стать более независимой. Неожиданно она столкнулась с множественными препонами, оказалось тяжело не только поступить в колледж, но и учиться там. Тем не менее в 1849 году Элизабет получила ученую степень, став первым доктором медицины женского рода в истории Америки. Но карьеру ее застопорилась - не нашлось больницы, которая захотела бы иметь в своих рядах женщину-врача. В итоге Блэквелл открыла собственную практику в Нью-Йорке, не без препон со сторон коллег. В 1874 году Элизабет вместе с Софией Джекс-Блейк создала медицинскую школу для женщин в Лондоне. Уйдя из медицины, Блэквэлл посвятила себя реформаторскими движениями, агитируя за профилактику, санитарию, планирование семьи, права женщин.

Джейн Гудолл (род.1934). Хотя человек и считает себя венцом природы и высшим существом, есть много черт, роднящих нас с животными. Особенно это очевидно, когда речь заходит о приматах. Благодаря работам приматолога и антрополога Джейн Гудолл, человечество по-новому взглянуло на шимпанзе, мы обнаружили общие эволюционные корни. Ученый смог выявить сложные социальные связи в сообществах обезьян, использование ими инструментов. Гудолл рассказала о том широчайшем диапазоне эмоций, который испытывают приматы. 45 лет своей жизни женщина посвятила изучению социальной жизни шимпанзе в Национальном парке в Танзании. Гудолл стала первым исследователем, которая дала своим подопытным имена, а не номера. Она показала, что грань между человеком и животными очень тонкая, надо учиться быть добрее.

Гипатия Александрийская (370-415). Древние женщины-ученые были большой редкостью, ведь в те времена занятие наукой считалось исключительно мужским делом. Гипатия получила свое образование от отца, математика и философа Теона Александрийского. Благодаря ему, а также своему гибкому уму Гипатия стала одним из самых видных ученых своего времени. Женщина занималась математикой, астрономией, механикой и философией. Примерно в 400 году ее пригласили даже читать лекции в Александрийскую школу. Смелая и умная женщина даже участвовала в городской политике. В итоге разногласия с религиозными властями привели к тому, что фанатики-христиане убили Гипатию. Сегодня она считается покровительницей науки, которая защищает ее от натиска религии.

Мария Митчелл (1818-1889). Среди известных астрономов имя этой женщины найти едва ли удастся. А ведь она стала первой американкой, профессионально работавшей на этом поприще. С помощью телескопа Мария в 1847 году обнаружила комету, названную официально в ее честь. За это открытие ей вручили даже золотую медаль, в итоге Митчелл удостоилась такой чести второй после Каролины Гершель, первой в истории женщины-астронома. В 1848 году Митчелл стала первой женщиной-членом Американской академии искусств и науки. Ученая в своих работах занималась составлением таблиц положений Венеры, она путешествовала по Европе. Благодаря Митчелл была объяснена природа солнечных пятен. В 1865 году Мария стала профессором астрономии. Тем не менее несмотря на известность в научном мире, она всегда оставалась в тени своих мужских коллег. Это и привело к тому, что женщина боролась за свои права, а также за отмену рабства.

Линия УМК В. В. Лунина. Химия (10-11) (баз.)

Линия УМК В. В. Лунина. Химия (10-11) (У)

Линия УМК В. В. Лунина. Химия (8-9)

Линия УМК Н. Е. Кузнецовой. Химия (10-11) (баз.)

Линия УМК Н. Е. Кузнецовой. Химия (10-11) (углуб.)

Великие женщины: химики-исследователи

«Широко распростирает химия руки свои в дела человеческие», – писал Михаил Ломоносов, и за последние два с половиной столетия актуальность его слов только возросла: каждый год одних только органических веществ синтезируется не менее 200 тысяч. К Международному женскому дню мы подготовили материал о судьбах шести выдающихся женщин-химиков, внесших значимый вклад в развитие науки о веществах.

Мария Склодовская родилась в Варшаве, и прожила тяжелое детство: отцу, по профессии учителю, приходилось очень много работать, чтобы лечить больную туберкулёзом жену и кормить четверых детей. Страсть Марии к учебе временами доходила до фанатизма. Договорившись с сестрой по очереди зарабатывать на высшее образование друг для друга и получив наконец возможность учиться, Мария блестяще заканчивает Сорбонну с дипломами по химии и математике и становится первой женщиной-преподавателем в истории университета. Совместно со своим мужем, Пьером Кюри, Мария открыла радиоактивные элементы радий и полоний, став первой в области исследования радиохимии и дважды Нобелевским лауреатом - по физике и химии. «Поэзия - та же добыча радия. В грамм добыча, в годы труды», – так упорство Склодовской-Кюри отразилось в стихах Маяковского.



Другим известным химиком и лауреатом Нобелевской премии стала старшая дочь Марии Склодовской-Кюри - Ирен. Ее воспитанием занимался дед по линии отца, в то время как родители вели интенсивную научную деятельность. Как и Мария, Ирен закончила Сорбонну, вскоре начала работать в Институте радия, созданного матерью. Своё главное научное достижение она совершила вместе со своим мужем - Фредериком Жолио, тоже химиком. Супруги положили начало в деле открытия нейтрона и стали известны разработкой метода синтеза новых радиоактивных элементов, основанного на бомбардировке веществ альфа-частицами.

Тетрадь является частью учебного комплекса по химии, основа которого учебник О. С. Габриеляна «Химия. 8 класс», переработанный в соответствии с Федеральным государственным образовательным стандартом. Учебное пособие включает 33 проверочные работы по соответствующим разделам учебника и может быть использовано как на уроках, так и в процессе самоподготовки.

Наша соотечественница Вера Баландина происходила из семьи купцов, жившей в маленьком селе Новосёлово далекой Енисейской губернии. Родители были счастливы, видя тягу своего ребенка к учебе: закончив с золотой медалью женскую гимназию, Вера поступила на Высшие женские курсы в Санкт-Петербурге по физико-химическому отделению. Повышала квалификацию Баландина уже в Сорбонне, параллельно работая в парижском институте Пастера. Вернувшись в Россию и выйдя замуж, Вера Арсеньевна много времени посвятила изучению биохимии и занималась акклиматизацией новых для страны растений, зерновых культур и изучением природы родной губернии. Помимо этого, Вера Баландина известна как меценат и благотворитель: она учредила стипендию для слушательниц Бесутжевских курсов, основала частную школу и построила метеорологическую станцию.

Племянница великого русского поэта и дочь генерала В. Н. Лермонтова, Юлия стала одной из первых женщин-химиков в России. Её начальное обучение было домашним, а затем она уехала учиться в Германию - российские учебные заведения в то время отказывали девушкам в возможности получения высшего образования. Получив докторскую степень, она вернулась на родину. Поздравлял её лично Д. И. Менделеев, с которым она состояла в теплых дружеских отношениях. За свою карьеру химика Юлия Всеволодовна опубликовала множество научных работ, занималась изучением свойств нефти, её исследования способствовали возникновению в России первых нефтегазовых заводов.

Пособие является частью УМК О. С. Габриеляна, предназначено для организации тематического и итогового контроля предметных и метапредметных результатов изучения химии в 8 классе. Диагностические работы помогут учителю объективно оценить результаты обучения, учащимся - подготовиться к итоговой аттестации (ГИА), прибегая к самопроверке, а родителям - организовать работу над ошибками при выполнении учащимися домашнего задания.

Маргарита Карловна родилась в семье немецкого офицера Российской армии Карла Фабиана, барона фон Врангеля. Способности к естественным наукам у девочки проявились рано, ей довелось учиться и в Уфе, и в Москве, и даже в Германии: детство и юность проходило в разъездах. Некоторое время Маргарита была ученицей самой Марии Склодовской-Кюри. Вернувшись на несколько лет в Россию после прихода к власти большевиков, она вынуждена была снова бежать в Германию. Там у неё был научный авторитет и хорошие связи, благодаря чему Маргарита Врангель стала директором института растениеводства Гогенгеймского университета. Её исследования лежали в области питания растений. В последние годы жизни она вышла замуж - для Маргариты сделали исключение, разрешив сохранить после вступления в брак свои научные регалии - за своего друга детства Владимира Андроникова, которого долгое время считала погибшим.


Родившись и проведя первые годы жизни в Каире, после начала Первой мировой войны юная Дороти оказалась в родной для её родителей Англии, где и началось её увлечение химией. Она много помогала своему отцу-археологу в Судане, занимаясь количественным анализом местных минералов под руководством химика-почвоведа А. Ф. Джозефа. Получив образование в Оксфорде и Кембридже, Дороти много занималась рентгеноструктурным анализом белков, пенициллина, витамина B12, больше 30 лет изучала инсулин, доказав его жизненную необходимость для больных диабетом, а за свои достижения была удостоена Нобелевской премии.


Мужчины изобрели много, например биржи ценных бумаг, уже даже есть электронные биржы, например, liteforex.ru/ . Все они созданы лишь для того, чтобы из воздуха делать деньги. А что женщины изобрели?

Кроме Марии Кюри, сколько ещё известных женщин-учёных Вы можете назвать? Что они открыли? Большинство ответит, что немного. В мире науки очень мало женщин и нельзя сказать, что это из-за того, что они не сделали никаких открытий, более того, едва ли не все их открытия остались забытыми из-за их коллег-мужчин.

В то время как половая дискриминация в науке сейчас не такая уж и большая, в прошлом многим женщинам-учёным не воздавалось по заслугам за их действительно инновационные открытия: проведение исследований, предложение гипотез, проведение экспериментов, включая усердную работу, всё только ради того, чтобы их известность была скрыта из-за их пола.

10. Вера Рубин 1928 г.р.

Научная карьера Веры Рубин была заполнена критикой и враждебностью со стороны ее коллег-мужчин, не смотря на это, она осталась сосредоточенной на своей работе, а не на этом отношении. Впервые она испытала враждебность, когда сообщила своему учителю физики в средней школе, что её приняли в Вассарский колледж. Он не очень ободряюще ответил «Это прекрасно. Всё будет хорошо до тех пор, пока ты будешь держаться подальше от науки».

И всё-таки это не привело Веру Рубин в уныние и даже после того, как ей было отказано во вступлении на курс астрономии в Принстоне, потому что к нему не допускались женщины, она продолжала обучение и в конечном итоге стала кандидатом наук в Джорджтауне. Работая совместно с Кентом Фордом, Рубин первая провела исследование, показавшее, что орбитальная скорость звезд на отдаленных частях галактик соответствует скорости звёзд в центре галактики. Тогда это было очень необычным наблюдением, поскольку считалось, что, если самые сильные гравитационные силы существовали там, где больше массы (в центре), сила должна уменьшиться в отдалении, заставляя орбиты замедлиться.

Ее наблюдения подтвердили гипотезу, сделанную ранее человеком по имени Фриц Цвики, который заявил, что своего рода невидимая темная материя должна быть рассеяна всюду по вселенной, не меняя свою скорость. Рубин смогла доказать, что существует в 10 раз больше темной материи во вселенной, чем считалось ранее, что более 90% вселенной заполнено ею. В течение многих лет исследование Веры Рубин не получало поддержку, поскольку многие ее коллеги-мужчины дискредитировали его. Они считали, что ее открытие не соответствует Законам Ньютона и что она, должно быть, сделала просчет. И ее докторскую, и магистерскую диссертацию раскритиковали и, в основном, проигнорировали, хотя доказательства были неопровержимы.

К счастью, научное сообщество со временем признало ее работу, но только потому, что ее коллеги-мужчины позже подтвердили это. Рубин должна все же получить Нобелевскую премию за свою работу.

9. Сесилия Пейн 1900 - 1979

Сесилия Пейн – женщина-учёный, которая усердно трудилась, но её удивительные открытия были в своё время опровергнуты её руководителями мужчинами. Она начала свои исследования в Кембриджском университете в 1919 году, когда ей дали стипендию в области изучения ботаники, физики и химии. Ее курсы были, по-видимому, закончены напрасно, так как Кембридж в то время не предлагал степеней женщинам. За время, которое она провела в Кембридже, Пейн обнаружила в себе истинную любовь к астрономии. Она перевелась в Редклифф и стала первой женщиной, получившей звание профессора астрономии, после чего многие увидели её талант в астрономии.

После опубликования шести работ и получения докторской степени к 25 годам, ее самым большим вкладом в науку стало открытие того, из каких элементов состоят звезды. "Не знаю как Вы, но я думаю, что компоненты звёзд – это довольно грандиозное дело". Её коллеги-мужчины очевидно так не считали. Человек по имени Генри Норрис Рассел, который руководит рассмотрением удивительной работы Пэйн, настоятельно рекомендовал ей не публиковать статью. Его объяснение состояло в том, что она противоречит общепринятым в то время познаниям и не будет принята аудиторией. Интересно, что он, по-видимому, изменил свое мнение спустя 4 года, когда он чудесным образом выяснил, из каких частиц состоит Солнце, и опубликовал об этом статью. Хотя его методы отличались от методов Пейн, заключение было тем же самым и ему отдали должное за открытие состава Солнца. С тех пол Сесилия была вычеркнута из книг по истории. По иронии судьбы Пейн позднее была удостоена чести получить премию имени Генри Норрис Рассела за её вклад в астрономию.

8. Цзяньсюн Ву 1912–1997

Цзяньсюн Ву иммигрировала из Китая в Америку, где она начала свою работу над Манхэттенским Проекта и разработку атомной бомбы. Ее самым большим вкладом в мировую науку стало открытие, которое опровергла широко известный в то время закон. В науке, "законы" - это наиболее широко распространенные и копируемые существующие исследования; так что доказательство того, что научный закон ошибочен, является довольно грандиозным предприятием. Закон был известен как Принцип сохранения чётности, который является очень сложным способом доказать идею симметрии, где частицы, которые являются зеркальными отображениями друг друга, будут действовать идентичным образом.

Коллеги Ву, Чен Нин Ян и Цзун Дао Ли, предложили теорию, которая могла опровергнуть этот закон и обратились к Ву за помощью. Ву приняла их предложение и выполнила несколько экспериментов, используя кобальт 60, который доказал ошибочность закона. Ее эксперименты были невероятно существенными, поскольку она смогла показать, что одна частица с большей вероятностью вытолкнет электрон, чем другая и это доказывало, что они не симметричны. Ее наблюдение перевернуло 30-летнее убеждение и опровергло закон сохранения чётности. Янг и Ли, конечно, не сделали запись о её участии в исследовании, и между тем были удостоены Нобелевской премии за своё «открытие», которое доказывает, что закон сохранение чётности может быть нарушен. Ву не была даже упомянута, хотя это именно она провела эксперимент, который действительно опроверг закон.

7. Нетти Стивенс 1862–1912

Если Вы немного знаете о хромосомах, Вы, по крайней мере, должны знать, что наш пол определен нашей 23-ей парой хромосом, X и Y.

Кому достались все лавры за это громадное биологическое открытие? Что ж, большинство учебников указывает Вам на человека по имени Томас Морган, хотя открытие фактически шло от женщины-учёного по имени Нетти Стивенс.

Она изучила вопрос определение пола у мучного хрущака и вскоре поняла, что пол зависит от X и Y хромосом. В то время как считалось, что она работала с человеком по имени Томас Морган, почти все ее наблюдения были сделаны самостоятельно.

Моргану позже присудили Нобелевскую премию за упорный труд Нетти. Подсыпая соль на рану, он позже опубликовал статью в журнале «Наука», в которой говорилось, что Стивенс во время всего эксперимента действовала больше как техник, чем как настоящий ученый, хотя, как оказалось, это не соответствовало действительности.

6. Ида Тэйк 1896–1978

Ида Тэйк внесла огромный вклад в область химии и атомной физики, который был в основном проигнорирован, пока её открытия не были позже «совершены вновь» ее коллегами-мужчинами. Во-первых, ей удалось найти два новых элемента, рений (75) и мазурий (43), которые как предполагал Менделеев появятся в периодической таблице. В то время как ей приписывают открытие рения, Вы можете заметить, что нет такого элемента как мазурий под атомным числом 43 или где-либо ещё в текущей периодической таблице. Что ж, это потому, что он теперь известен как технеций, открытие которого приписано Карло Перриера и Эмилио Сегре.

В период первого исследования коллеги-мужчины Иды Тэйк предположили, что элемент был слишком редок и исчез слишком быстро, чтобы быть естественно найденным на Земле. Хотя доказательства Тэйк были ясны, они были в основном проигнорированы, пока Перриер и Сегре искусственно не создали элемент в лаборатории, и им было приписано это открытие, чего по праву заслужила Тейк. В дополнение к этой несправедливости Тейк также опубликовала работу, которая создала предпосылки идеи ядерного деления, которая была позже перехвачена Лиз Мейтнер и Отто Стерном. Ее статья, которая на пять лет опередила своё время, описала фундаментальные процессы расщепления, хотя термин еще не был изобретен.

Она исходила из теории Энрико Ферми, что элементы выше урана действительно существуют и предложила объяснение, что частицы могут распадаться при обстреле нейтронами, чтобы выпустить огромное количество энергии. Из раза в раз её статья игнорировалась вплоть до Манхеттенского проекта 1940 года, хотя Ферми была присуждена Нобелевская премия за «открытие» того, что новые радиоактивные элементы производятся во время обстрела нейтронами. Несмотря на ее монументальные открытия, Тейк никогда не была признана (хотя многие винят в этом ее методы, а не ее пол).

5. Эстер Ледерберг 1922–2006

Половая дискриминация Эстер Ледерберг состояла больше в том, что её муж затмил её, а не в том, что она была обижена ее коллегами-мужчинами. Открытия Эстер были сделаны вместе с ее мужем Джошуа. В то время как они оба играли одинаково важные роли, вклады Эстер остались в основном непризнанными, а Джошуа был удостоен Нобелевской премии за свои исследования.

Эстер была первой, кто решил проблему репродуцирования бактериальных колоний в целом с той же самой оригинальной формой, используя технику, известную как металлизация точной копии. Ее метод был невероятно прост в том, что он только потребовал использования определенного вида вельвета. Несмотря на несметное число существенных открытий в биологии и генетике, ее научная карьера была трудна, поскольку она постоянно боролась за признание от ее коллег. Большая часть славы за открытия досталось ее мужу Джошуа. Ее срок пребывания в должности даже был аннулирован Стэнфордом после понижения в должности до Адъюнкт-профессора Медицинской Микробиологии. С другой стороны, Джошуа был назначен основателем и председателем Отдела Генетики. Эстер была основным партнером Джошуа и, несмотря на ее прилежную работу, она так и не получила признания за многие свои удивительные открытия.

4. Лиз Майтнер 1878–1968

Процесс ядерного деления стал существенным открытием для научного мира, и немногие знают, что женщина по имени Лиз Мейтнер была первой, кто выдвинул эту гипотезу. К сожалению, ее работа в радиологии проходила посреди Второй мировой войны, и она была вынуждена в тайне встретиться с химиком именем Отто Гана.

Во время Аншлюса (насильственного присоединения Австрии к фашистской Германии) Майтнер уехала из Стокгольма, в то время как Ган и его партнер Фриц Стрэссмен продолжали работать над их экспериментами с Ураном. Ученые-мужчины были озадачены тем, как уран, казалось, формировал атомы, которые, как они думали, был радий, когда уран был обстрелен нейтронами. Майтнер написала мужчинам, излагая теорию, что атом, возможно, после обстрела распался на то, что позже был признано барием. Эта идея имела огромное значение для мира химии и, работая с помощью Отто Фриша, она смогла объяснить теорию ядерного деления.

Она также заметила, что в природе не существует элемента больше урана и что ядерное деление имеет потенциал создания огромного количества энергии. Майтнер не была упомянута в статье, опубликованной Стрессменом и Ганом, хотя её роль в открытии была чрезвычайно преуменьшена ими. Мужчинам была присуждена Нобелевская премия за их «открытие» в 1944 году, без упоминания Майтнер, что как позже было заявлено, было «ошибкой» комитета по премии. В то время как она не получила Нобелевскую премию или формальное признание за её открытие, в честь Майтнер был назван элемент номер 119, что стало довольно неплохим утешительным призом.

3. Хенриетта Ливитт 1868–1921

Хотя Вы могли никогда не слышать о Хенриетте Ливитт, её открытия радикально изменили как астрономию, так и физику, существенно изменив наш взгляд на вселенную. Без её открытия такие люди как Эдвард Хуббл и все, кто его последователи никогда бы не могли рассматривать вселенную в её текущей величине. Открытия Ливитт в основном не были упомянуты или признаны теми, кто кардинально в них нуждался, чтобы доказать свои собственные теории.

Ливитт начала свою работу, имея размеры звезд и составляя их каталог в Обсерватории Гарварда. В то время, измерение и каталогизация звезд при ученых-мужчинах была одним из нескольких рабочих мест в науке, которая считалась подходящей для женщин. Ливитт работала как "компьютер", выполняя методичные, повторяющиеся задачи, чтобы собрать данные для ее руководителей мужчин. Ей платили только 30 центов в час за эту интеллектуально изнурительную работу. Выполняя каталогизацию в течение достаточно долгого времени, Ливитт начала замечать зависимость между яркостью звезды и ее расстоянием от Земли. Позже она продолжила развивать идею, известную как отношения яркости периода, которая позволила ученым выяснять, как далеко находится от земли звезда, основанной на ее яркости. Вселенная буквально открылась, поскольку ученые поняли, что каждая звезда не была просто пятнышком в нашей собственной огромной галактике, но и за её пределами.

Такие известные астрономы и физики как Харлоу Шэпли и Эдвард Хуббл тогда использовали ее открытие для основания своей работы. Ливитт почти исчезла, поскольку директор Гарварда отказался официально признать её независимое открытие. Когда Миттас Лефлер наконец заметил ее в 1926 году как возможную номинантку на Нобелевскую премию, она скончалась до того, как смогла получить награду. Шэпли тогда дали премию, он гордился, что он правомерно заслужил признание за интерпретацию ее результатов.

2. Джоселин Белл Бернелл 1943 г.р.

Вдохновившись книгами своего ее отца, Бернелл начала свою работу с астрономии. Она смогла получить высшее образование со степенью бакалавра в области физики в Университете г. Глазго и продолжила в Кембридже работать над своей докторской диссертацией по философии. В то время, когда она совершила своё открытие, Бернелл работала при Энтони Хюише, изучая квазары. Независимо работая с радио-телескопами, Белл заметила определенные и постоянные сигналы, испускаемые чем-то в космосе.

Сигналы были не похожи ни на какие известные сигналы, которые когда-либо были получены. Хотя она тогда не знала источник сигналов, открытие было огромно. Эти сигналы позже стали известны как пульсары, которые являются сигналами, которые испускаются нейтронными звездами. Эти наблюдения были быстро обнародованы и изданы под именем Хюиша, появляющимся до Бернелл. Хотя Бернелл провела исследование и сделала открытие самостоятельно, Хьюиш позже был удостоен Нобелевской премии 1974 года за его открытие пульсаров. Несмотря на то, что в своё время она была обделена премией и официальным признанием её открытия, теперь повсюду признано, что она была первым человеком, сделашим это открытие.

1. Розалинд Франклин 1920–1958

Розалинд Франклин была блестящей женщиной-учёным. Вероятно, это самый известный случай, когда с женщиной поступили несправедливо её коллеги мужчины, украв её открытие.

Если Вы знаете что-нибудь о науке, Вы, вероятно, слышали имена Уотсон и Крик, которым приписывается открытие структуры ДНК. Что Вы можете не знать, так это полемика, окружающая их «открытие» и то, что гораздо большее открытие было в статьях Розалин Франклин, над которыми она работала.

В 33 года, она была поглощена работой над ещё не опубликованным открытием, которое могло произвести революцию в биологии. Она пришла к выводу, что ДНК состоит из двух цепей и фосфатной основы. Форма была также подтверждена ее экспериментами с рентгеном структуры ДНК так же как ее измерениями элементарной ячейки. В то время она почти ничего не знала о том, что ее коллеги, Вилкинс и Перуц показали Уотсону и Крику (которые посещали Королевский колледж), не только ее рентгеновский снимок, но и даже отчет со всеми ее недавними результатами.
С результатами научной работы в руках Уотсону и Крику преподнесли это открытие на серебряном блюде.

Мало того, что они получили полное авторство этого исследования, Уотсон тогда использовал их дружбу, чтобы убедить Розалинд, что она должна издать свои результаты после того, как они издали свои. К сожалению, из-за этого ее работа выглядит больше как подтверждение, чем как открытие. После того как «открытие» Уотсона и Крика было признано, они были удостоены Нобелевской премии и стали учеными, чьи лицами, намалёваны на каждом учебнике биологии в Америке. Розалинд Франклин по сути осталась непризнанной

Copyright сайт ©
Перевод статьи с сайта listverse.com
Переводчик RinaMiro

Copyright сайт © - Данная новость принадлежит сайт, и являются интеллектуальной собственностью блога, охраняется законом об авторском праве и не может быть использована где-либо без активной ссылки на источник. Подробнее читать - "об Авторстве"


Почитать ещё:

Женщину в науке мир признал не сразу. Лишь в начале ХХ века наметились тенденции к равноправию. Мир захлестнула первая волна феминизма и борьба за избирательные права женщин.

О времена, о нравы!

Сегодня женщина с высшим образование — довольно обыденное явление. До середины 19 века в России женщинам доступ к науке и образованию был полностью закрыт. Некоторое время женщинам разрешалось посещать лекции Петербургского университета в качестве вольнослушателей. Однако вскоре эту практику прекратили.

В 1878 году были открыты Высшие женские курсы — частное учебное заведение в Петербурге. Директором курсов был назначен известный ученый-историк Константин Николаевич Бестужев-Рюмин. По имени первого директора Высшие женские курсы получили название Бестужевских. На курсы принимались девушки не моложе 21 года. Обучение проходило на трех факультетах (историко-филологическом, юридическом и физико-математическом) и продолжалось четыре года. Обучение было платным.

Студенткам физико-математического отделения читали лекции по математике, физике, химии, ботанике, зоологии, минералогии, кристаллографии, физической географии.

Окончившие Высшие женские курсы получали право преподавать в женских средних учебных заведениях и младших классах мужских учебных заведений. Закончилась история этого уникального учебного заведенияв 1918 году, когда его закрыли большевики. Многие бестужевки оставили значительный след в науке, литературе и общественной жизни России. Назовем некоторые известные имена.

– русская писательница, дважды награждалась Государственной премией, орденом Ленина. Много лет была редактором журнала «Молодая гвардия».

– первая в России женщина, защитившая докторскую степень по средневековой истории. Ее книга о Ричарде Львиное Сердце до сих пор пользуется популярностью среди ученых.

Софья Васильевна Романская — первая женщина -астрономом, работала в Пулковской обсерватории.

Софья Васильевна Ворошилова-Романская у зенит-телескопа Пулковской обсерватории

НАУКА И ВЕЛИКИЕ ЖЕНЩИНЫ

С. В. Ковалевская в 1880 г.

Россия в 2015-м отмечает 165 лет со дня рождения великой русской ученой Софьи Ковалевской.

В науке Софья Ковалевская запомнилась больше всего, как первая в России и в Северной Европе женщина-профессор и первая в мире женщина - профессор математики. И как автор повести «Нигилистка» (1884).

Поскольку в Российской империи женщины не имели права на поступление в высшие учебные заведения, Софья решила уехать учиться заграницу. Для выезда зарубеж нужно было согласие родителей или мужа. Отец Софьи был против обучения дочери за границей, поэтому она выходит замуж за Владимира Ковалевского и уезжает в Германию, где слушает лекции одного из самых известных математиков того времени, «отца современного анализа» — Карла Вейерштрасса.

Затем следует получение степени доктора философии, рождение дочери и переезд в Россию. К сожалению, вскоре трагически уходит из жизни муж Софьи и молодая мама с пятилетней дочерью на руках возвращается в Берлин к Вейерштрассу. Тому удается выхлопотать Софье Ковалевской место в Стокгольмском университете, где она изменив имя на Соню Ковалевски (Sonya Kovalevsky), становится профессором кафедры математики в Стокгольмском университете, с обязательством читать лекции первый год по-немецки, а со второго - по-шведски. В скором времени Ковалевская овладевает шведским языком и печатает на этом языке свои математические работы и литературные произведения.

29 января 1891 года Ковалевская в возрасте 41 года скончалась в Стокгольме от воспаления легких. Похоронена в Стокгольме на Северном кладбище

В 1911 году за открытие радия и полония свою вторую Нобелевскую премию по химии получает Мария Кюри. Первую Нобелевскую премию по физике она получила вместе со своим мужем, Пьером Кюри, за выдающиеся заслуги в совместных исследованиях явлений радиации. Награда 1911 года — чрезвычайной важности: впервые мир открыто признал равноправие женщины и мужчины как ученого.

Химик и физик польского происхождения. В скрижалях Сорбонны ее имя значится первым в списке женщин-преподавателей.

Мария Кюри является первой и единственной женщиной в мире — дважды лауреатом Нобелевской премии.

Она была удостоена медали Бертело Французской академии наук, медали Дэви Лондонского королевского общества — ведущего научного общества Великобритании, учрежденного еще в 1660 году, медали Эллиота Крессона Франклиновского института, была членом 85 научных обществ всего мира, в том числе Французкой медицинской академии, получила 20 почетных степеней.

«В жизни нет ничего такого, что могло бы внушать страх, есть только то, что нужно лучше понять», — сказала однажды Мария Кюри. Ее дочь, Ирен Жолио-Кюри, пошла по стопам матери и в 1935 году также получила Нобелевскую премию.


Пьер Кюри и Мария Склодовская-Кюри

Мария Кюри основала институты Кюри в Париже и в Варшаве. Жена Пьера Кюри, вместе с ним занималась исследованием радиоактивности. Совместно с мужем открыла элементы радий (от лат. radium - лучистый) и полоний (от лат. polonium - польский - в дань родине Марии Склодовской).

Мария Склодовская родилась в Варшаве. Её детские годы были омрачены ранней потерей одной из сестер и вскоре - матери. Ещё школьницей она отличалась необычайным прилежанием и трудолюбием. Она стремилась выполнить работу самым тщательным образом, не допуская неточностей, часто за счёт сна и регулярного питания. Она занималась настолько интенсивно, что, закончив школу, вынуждена была сделать перерыв для поправки здоровья. Мария стремилась продолжить образование.

Однако в Российской империи, в то время включавшей часть Польши вместе с Варшавой, возможности женщин получить высшее научное образование были ограничены.

Мария проработала несколько лет воспитателем-гувернанткой. В возрасте 24 лет, при поддержке старшей сестры, она смогла поехать в Сорбонну, в Париж, где изучала химию и физику. Мария Склодовская стала первой в истории этого известнейшего университета женщиной-преподавателем.

— советский математик, известна своими трудами в области тригонометрических рядов. Доктор физико-математических наук (1935), профессор МГУ. Увлеклась математикой ещё в гимназии. В 1918 году поступила на физико-математический факультет в МГУ - одной из первых женщин, поступивших учиться на этот факультет Московского университета. Математический талант Н. К. Бари заметил профессор Н. Н. Лузин, и вскоре она стала одной из его видных учениц и активной участницей его семинара - членом «Лузитании».

Свои первые результаты по теории множеств Н. К. Бари получила ещё в студенческие годы, когда училась на третьем курсе университета. В 1925 году окончила аспирантуру Московского университета, а в январе следующего года защитила кандидатскую диссертацию на тему «О единственности тригонометрических разложений». С 1927 года она - член Французского и Польского математических обществ. В 1927 году в Париже активно участвовала в семинаре Адамара.

— советский историк науки, математик, доктор физико-математических наук (1961), профессор (1962), действительный член Международной академии истории науки (1971). В 1932 году вместе с родителями переехала в Москву. Отец - Григорий Георгиевич Башмаков, ученик П. И. Новгородцева, главы московской школы философии права, работал в Москве адвокатом. Мама - Анна Ивановна, урожденная Аладжалова. Изабелла Башмакова с детства увлекалась поэзией, особенно отдавая предпочтение Пушкину и Тютчеву. Была лично знакома с Пастернаком и многими другими, менее известными поэтами. Сама писала стихи и долго выбирала между математикой или поэзией. В 1938 году всё же поступила на механико-математический факультет Московского государственного университета.

За свою долгую жизнь, Изабелла Григорьевна подготовила более 20 кандидатов науки. А результаты ее научных исследований вошли в общие курсы по истории математики.

В 1997 году присвоено звание Заслуженного профессора Московского университета.

Ольга Арсеньевна Олейник - советский математик, доктор физико-математических наук, профессор, действительный член РАН (1991), заведующая кафедрой дифференциальных уравнений механико-математического факультета МГУ. Главный редактор «Трудов Московского математического общества» и заместитель главного редактора журнала «Успехи математических наук».

Вклад О. А. Олейник в математику получил международное признание. Её работы цитируются во многих западных и российских научных монографиях и статьях. За свою жизнь опубликовала более 359 статей. Огромное количество государственных наград и премий.

Бывало и такое…

Есть особая страница и в истории Московского Государственного Университета, связанная с воинскими судьбами женщин и девушек, которые пришли в авиацию из университетских аудиторий и сражались с фашистами на боевых самолетах. Женский авиационный полк начал формироваться в сентябре 1941 года по инициативе Марины Расковой.


23 летчицы и штурманы 46-го гвардейского полка были удостоены звания Героя Советского Союза, среди них 5 — воспитанницы МГУ.
Одна из немногих военных фотографий штурмана самолета Героя Советского Союза Евгении Рудневой

Совершила 780 вылетов, после войны преподавала математику в МВТУ.


Штурманы 46-го авиационного полка ночных бомбардировщиков Герой Советского Союза Е.Б. Пасько, Герой Советского Союза Л.Н. Литвинова (Розанова) и О.Ф. Яковлева во время встречи со студентами и преподавателями Московского текстильного института имени А.Н. Косыгина. Москва. 1985 год. Автор В. Патрикеев

848 раз поднималась в небо, после войны преподавала в Институте иностранных языков.


Советские летчицы Руфина Гашева и Наталья Меклин у самолетов По-2

Совершила 890 вылетов, после войны вернулась в МГУ, окончила мехмат, стала кандидатом физико-математических наук и преподавала в Полиграфическом институте.


Герой Советского Союза гвардии лейтенант Екатерина Рябова, летчица Таманского авиационного полка, готовится к очередному боевому вылету.

Полина Гельман провела 857 вылетов, окончила Институт иностранных языков.


Слева направо: летчица Полина Гельман, физик Пелагея Кочина, физиолог Лина Штерн, оперная певица Дебора Пантофель-Нечецкая, середина 1940-х

Тот факт, что раньше образование было недоступно для женщин, сейчас вызывает улыбку. Сегодня в британских школах ученицы не уступают по рейтингу ученикам, а общественные организации (ну что-то вроде «Женщины в науке», WISE — Women into Science, Engineering and Construction) рассеивают уже ставшие привычными стереотипы, что занятие наукой — чисто мужская привилегия.

Вот, например, что то вроде семинара по обмену знаниями в математике — «She’s geeky» — проходит в Сан-Франциско уже в пятый раз! (В буквальном переводе «geeky» может означать «зацикленный, чокнутый, помешанный», только в хорошем смысле, в общем как раз то, что и можно применить к ученому — думать о науке постоянно, иначе это занятие теряет смысл. Помню, Нобелевский лауреат 2010 года Костя Новоселов так ответил на вопрос журналиста о свободном времени: его просто нет, все время в лаборатории).

Также учреждена ежегодная женская премия The UKRC Women of Outstanding Achievement Award за достижения в различных областях науки и техники.

Время показало, что женщина может наиболее полно раскрыть свои возможности и быть полезной не только семье, но и обществу, если создать ей такую возможность.

@Павел Клюев, @Анна Федулова

Женщины-учёные во главе институтов или больших научных групп встречаются сейчас по всему миру - и вряд ли кого-то можно этим удивить (несмотря на то, что гендерный дисбаланс в этой области всё равно сохраняется). Более удивительно другое: даже в те времена, когда женщины не могли голосовать и обучаться с мужчинами на равных правах (или когда сексизм делал женщин «учёными второго сорта» - если речь о первой половине XX века), всё равно исследовательский талант находил способ пробиться. Женщины-изобретатели, женщины-инженеры и женщины-первооткрыватели меняют нашу жизнь уже как минимум полтора столетия - и мы вправе думать, что более ранний вклад женщин в науку и технику попросту не задокументирован.

Лечение опухолей радиацией

Мария Кюри

Совместные исследования Пьера и Марии Кюри - это, пожалуй, самый известный пример семейной коллаборации за всю историю науки. Впрочем, определённую популярность имеет и та теория, что Мария использовала положение мужа в обществе (и его пол) как трамплин, а на самом деле её гений не требовал соавтора. Понятно, откуда эта теория взялась: большая часть открытий Склодовской-Кюри, а также вручение ей второй Нобелевской премии случились в её жизни уже после смерти Пьера (это относится и к пионерским исследованиям о воздействии радиации на раковые клетки). Интересно, что дочь французских учёных, Ирен Жолио-Кюри, пошла по стопам родителей не только в области научных интересов: свою Нобелевскую премию, тоже связанную с изучением радиоактивности, Ирен, как и мать, разделила с мужем.

Рентгенограмма структуры молекулы ДНК

Розалинд Франклин

Роль Розалинд Франклин в открытии, которое многие считают ключевым научным достижением XX века, принижалась в течение долгих десятилетий (чему немало поспособствовала ранняя смерть Франклин от рака) - к счастью, теперь дела обстоят не так. Несмотря на то что решение Нобелевского комитета, лишившего Розалинд её доли премии и отметившего только Джеймса Уотсона, Фрэнсиса Крика и Мориса Уилкинса, не отменить, против правды не попрёшь: именно выполненный Франклин рентгеноструктурный анализ ДНК стал тем недостающим шагом, который позволил окончательно визуализировать двойную спираль - что охотно признаёт, к примеру, и сам Крик.

Физическая теория деления ядра

Лиза Мейтнер

Если в нескольких других случаях, когда Нобелевский комитет обошёл вниманием женщин-соавторов важнейших открытий, можно отчасти упрекнуть работавших рядом с теми женщинами мужчин, то в случае рабочей пары Лиза Мейтнер - Отто Ган какую-либо неприязнь заподозрить сложно: скорее всего, вся вина лежит на самом комитете. Считающаяся прародительницей ядерного оружия Мейтнер всю сознательную жизнь была пацифисткой - должно быть, эта убеждённость сыграла не последнюю роль в том, что в честь Мейтнер не так давно назвали один из новых химических элементов, мейтнерий.

Алгоритм современного формата беспроводных коммуникаций

Хеди Ламарр

Это история из числа тех, которые вызвали бы обвинение в неправдоподобности, если бы что-то такое сочинили для художественного фильма: таинственная звезда Голливуда родом из Европы и авангардный композитор, увлечённый автоматизаций инструментов (речь о Джордже Энтайле) вместе придумывают новый способ кодировки сигналов, препятствующий их глушению. Ламарр, чья кинокарьера продолжилась после Второй мировой войны, не только спасла множество кораблей флота США от вражеских торпед (её технологию обнаружили заново и стали широко применять уже в 1960-е, начиная с Карибского кризиса), но и стала прародительницей стандартов Wi-Fi и Bluetooth.

Механизм эмбриогенеза

Кристиана
Нюсляйн-Фольхард

Продолжая традиции великой Барбары МакКлинток (она же «Безумная Барбара») с её идеями о мобильных элементах, находящихся в любом геноме, Нюсляйн-Фольхард соединила генетику с эмбриологией. На примере фруктовых мушек Кристиана доказала, что внимательное изучение того, как из одноклеточного эмбриона развивается целый организм, может позволить нам узнать очень многое о специализации генов.

Компьютерный алгоритм

Ада Лавлейс

Первой «программе» для вычислительной машины куда больше лет, чем кажется большинству людей: Чарльз Бэббидж, изобретатель механического компьютера, консультировался в своей работе с Лавлейс (урождённой Байрон - дочери того самого лорда Байрона). То ли в 1842-м, то ли в 1843-м Ада написала первый в истории алгоритм работы для прибора Бэббиджа (собственно, первую «программу»), но это не единственный её вклад в историю информационных технологий: унаследовавшая от отца склонность к романтике, Лавлейс, в отличие от практиков-современников, представляла, как машины будут не только помогать людям в математике, но и изменят всю нашу жизнь.

Лекарства от лейкемии, герпеса и малярии

Гертруда Элион

Несмотря на то что большинство лекарственных препаратов и действующих веществ, к работе над которыми имела отношение великий биохимик Гертруда Элион, были обнаружены и протестированы в соавторстве с различными учёными-мужчинами, уникальный исследовательский подход, ничуть не основанный на методе тыка, а ориентирующийся на различия в здоровых и патогенных клетках, является в первую очередь её заслугой.

Скелет плезиозавра

Мэри Эннинг

Сказать, что Эннинг, выросшая в семье плотника, не была похожа на британских леди своего времени - это не сказать примерно ничего: Эннинг заложила основы полевой палеонтологии, регулярно рискуя жизнью и здоровьем для обнаружения всё новых останков динозавров в прибрежных скалах графства Дорсет (и это в то время, когда вся важность подобных открытий ещё не казалась столь очевидной). Разумеется, женщина неблагородного происхождения не могла добиться практически никакого официального признания в Англии середины XIX века - но уже к концу века Эннинг была канонизирована как важнейший исследователь.

Компилятор

Грейс Хоппер

Не будет преувеличением сказать, что без участия Грейс Хоппер программирование выглядело бы совершенно иначе: она не только написала первую программу-компилятор (то есть предложила концепцию компьютерного «переводчика»), но и лично пропагандировала идею языков программирования, не привязанных к конкретному устройству, что, разумеется, давно стало стандартной концепцией. Её достижения были настолько значительны, что в окончательную отставку с военной службы её отправили только в 80 лет в звании контрадмирала.

Рентгеноструктурный анализ биомолекул

Дороти Ходжкин

Поскольку для множества биомолекул их форма неотрывно связана с их функцией (в первую очередь это касается белков), определение трёхмерного строения биополимеров является одной из ключевых задач биохимии. До открытий доктора Ходжкин, видоизменившей известную с начала XX века технику рентгеноструктурного анализа, простого и убедительного способа это сделать попросту не было: сейчас 3D-структуры белков устанавливаются экспериментальным образом по всему миру.